OpenlL Tablets BRMS OpenL Studio User Guide

Preface

This preface is an introduction to the OpenL Studio User Guide. The following topics are included in this

preface:

* Audience

® Related Information

* Typographic Conventions

Audience

This guide is intended for the following users:

User type Purpose Required knowledge
Business View and modify company business rules stored in Knowledge of decision tables is
users tables. required.

Manage technical details of rule tables. Organize Knowledge of OpenL Tablets
Developers) : .

and deploy rule projects. technology is required.

Related Information

Openl Studio is a tool of the OpenlL Tablets product. For information on OpenL Tablets Rules, see OpenL

Tablets Reference Guide.

Typographic Conventions

The following styles and conventions are used in this guide:

Convention Description
Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands,
Bold menus, option buttons, perspectives, tabs, tooltip labels, tree elements, views, and
o
windows.
Represents keys, such as F9 or CTRL+A.
Represents a term the first time it is defined.
Represents file and directory names, code, system messages, and command-line
commands.
Select File >) .)
S A Represents a command to perform, such as opening the File menu and selecting Save As.
ave As
Italic Represents any information to be entered in a field. Represents documentation titles.
<> Represents placeholder values to be substituted with user specific values.

1/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/

Convention Description

Represents a hyperlink. Clicking a hyperlink displays the information topic or external
source.

Hyperlink

Introducing OpenL Studio
This chapter introduces main OpenL Studio concepts. The following topics are included in this chapter:

* What Is OpenL Studio?
* Working with Projects in OpenlL Studio
* Openl Studio Components

® Security Overview

What Is OpenL Studio?

Openl Studio is a web application employed by business users and developers to view, edit, and manage
business rules and rule projects created using OpenlL Tablets technology. For more information on OpenL
Tablets, see Openl Tablets Reference Guide.

By using OpenL Studio, users can modify rules directly in a web browser without installing additional tools.
Openl Studio provides an advanced functionality for creating and modifying rules, viewing errors, and
executing tests.

Working with Projects in OpenL Studio

Openl Studio is intended for a multi-user environment. It provides a centralized storage of rule projects called
Design repository. Design repository is stored on the OpenL Studio server and can be accessed by any user.
However, users cannot modify projects directly in Design repository. Instead, to make modifications to a
project, users must execute the following procedure:

Step Action Description

When a project is opened, its status is set to No Changes, and a copy of it is created
in the user’'s workspace,

Open a o . :
1 oroject a specific location on the OpenL Studio server.
Work copies of projects made editable by a particular user are stored there. Users
can only access their personal workspaces.
After any modification of a project, its status is set to In Editing.
A project in the In Editing status is locked in Design repository to avoid loss of
information.
Modify a Other users cannot edit it until the project is saved.
2 oroject. Other users can only open the project in read-only mode, with the No Changes

status.

Modifications to a project in the In Editing status are performed on the working
copy stored in the user's workspace.

Modifications do not become immediately visible to other users.

2/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/

Step Action Description

Saving a project copies the modified copy of the project from the user's workspace
to Design repository.
Save 8 A new revision of the project is created in Design repository.
3 oroject. A project can be restored to any of its previous revisions. In this case, its status is set
to Viewing Revision.

From this moment, changes are visible to other users and the project is available for

editing.

Closing a project deletes it from the user's workspace without saving changes and does not affect the revision
in Design repository. Closed projects can be browsed in repository editor but are not available in Rules Editor.

The following diagram illustrates general rules project lifecycle. This is a simplified schema of rules
development workflow where activities as opening, opening for editing, closing, deleting, and erasing the

current project or deploying configuration are omitted.

3/150

Development

-
Openl Studio

|
' I
' I
' I
' I
' Rules Project is Rules are Rules are] |
—{Create Project - J —Create Rules—j- Test rules—pms-{ i
| created created tasted |
' |
! |
' |
! |
' |
|
| dit Rulgs———— Rules are ——Test rul :
I modified |
: lg—— test failed) Edit Rules I
|
' I
I
I [test passed] Save Proiect :

|

|

|

|

. Deplo

: japiect 1= Caonfi li:l.lral!llltit:nn

i saved reate Deploy Configurati i E

| is created

I

e 1

Production

F-————7——7—== B |

| Deployment Repository |

: Deplay Project |
|

I |

: Project is I

| deployed :

| |

' |

e L ______________________ 1

Lise Rules

Rules project development workflow

Development of rules starts with creating a new project that will contain the rules. If the project already exists,
it must be opened for editing. Then rules are created or updated and properly tested. After rules are
completed and all tests are passed, a user saves the project. At this point, the updated revision of the project
is saved to Design repository and applied changes of the project become available for viewing and editing by
other users. If no more changes to the project are planned in the nearest future, a user can close the project.

Saved project revision is used to create deploy configuration. Several projects can be included in the same
deploy configuration. Deploy configurations are used to deploy updates to the production environment.

If the project is not required any more, it can be deleted.

OpenlL Studio Components

47150

Openl Studio consists of the following main components:

Component

Description

Rules Editor

Graphic user interface running in a web browser allowing users to browse rule modules,
modify table data, and run tests.
Rule project configurations are browsed and updated there as well.

Rules Editor is the default user interface displayed when a user opens OpenL Studio.
Rules Editor does not display all rule module files but provides a logical view of rules
stored in a module.

This view is convenient for users who modify business rules.

Rules Editor displays only modules available in projects stored in the user's workspace.
To retrieve a project to the user's workspace, open the project as described in Working
with Projects in OpenL Studio.

For more information on using Rules Editor, see Using Rules Editor.

Repository
editor

Graphic user interface running in a web browser allowing users to browse and manage
projects in Design repository.

Unlike Rules Editor, repository editor displays physical contents of rule projects.

Users can easily switch between Rules Editor and repository editor in user interface.

Repository editor provides the following main functions:

- uploading projects from the file system to Design repository

- editing, saving, opening, and closing projects

- modifying project structure and properties managing project revisions

- copying and deleting projects in Design repository

- managing and tracing deploy configurations

For more information on using repository editor, see Using Repository Editor.

Design
repository

Centralized storage of rule projects accessible by all OpenlL Studio users.

Projects uploaded to Design repository are visible to other users.
Design repository creates a separate project revision each time a project is saved.
Any project revision can be opened.

Deploy
configurations

Centralized storage of final rule projects to be delivered to the production environment
where solution applications use them.

Projects can be deployed to deployment repository from Design repository using
deploy configurations.

Deploy configuration is a specific OpenL Studio project type.

repository It identifies rule projects and project revisions to be deployed to deployment
repository.
Deploy configurations are saved and versioned so that developers can identify which
specific rule project revisions are deployed.

Deployment

repositories

Production storages of deployed rule projects where solution applications use them.

5/150

Component Description

Project storage on the server containing projects edited by users. Each user has a
User workspace)
personal workspace unavailable to other users.

Security Overview

Openl Studio supports the following user modes:

Mode Description
Demo This is a multi user mode with the list of users predefined in the database. All changes in
the database will be lost after the application restart.
mode The user’s projects will be located in the folder.
In this mode, only one user who is currently logged in on the computer can work in OpenL
Studio.
This mode is selected when OpenL Studio is installed on the local machine.
Single user All user projects are located in the root of the directory.
mode Single user mode is set by default and does not require additional settings, including logon
to the system.
Moreover, the system works faster in this mode but neither user management nor access
control is provided.
This mode enables multiple users to work in OpenL Studio and supports a security
mechanism restricting access
to certain product functions based on user access rights. Each OpenL Studio user is
identified by a unique name.
Multi user When a user opens OpenL Studio in a web browser, he or she must log into the system.
mode Users can have varied levels of access in OpenL Studio. For example, system administrators
usually have full access
to all OpenL Studio functions, whereas other users may only have access rights to view or
modify business rules.
Openl Studio is used to authenticate and manage user credentials/permissions.
In this mode, user’s projects are located in the directory.
In this mode, multiple users can run OpenL Studio using their unique user names.
Active The user’s projects will be located in the directory.
Directory Active Directory will be used to authenticate and manage user credentials.
A place where user permissions will be managed can be OpenlL Studio or Active Directory.
In this mode, multiple users can run OpenL Studio using their unique user names.
The user’s projects will be located in the directory.
SSO: CAS CAS (Central Authentication Service) server will be used to authenticate and manage user

credentials.
A place where user permissions will be managed can be OpenL Studio or SSO identity
provider.

6/150

Mode Description

In this mode, multiple users can run OpenL Studio using their unique user names.

The user’s projects will be located in the directory.
SSO: SAML SAML (Security Assertion Markup Language) supporting Identity Provider server will be

used to authenticate and manage user credentials.

A place where user permissions will be managed can be OpenlL Studio or SSO Identity

provider.

Multiple users can run OpenlL Studio using their unique user names.

User projects will be located in the directory.
SSO:0Auth2

OAuth2 (Open Authorization) supporting the identity provider server is used to
authenticate and manage user credentials.

Getting Started

This chapter explains logging into OpenL Studio and briefly introduces the user interface. The following topics
are included in this chapter:

* Signing In to OpenL Studio

* Modifying User Profile

¢ Displaying the OpenL Studio Help
® Signing Out of OpenlL Studio

* Introducing Rules Editor

* Introducing Repository Editor

Signing In to OpenlL Studio
To sign in to OpenL Studio, proceed as follows:

1. In the web browser address bar, enter the OpenL Studio URL provided by the system administrator. The
Openl Studio URL has the following pattern:

In the single user mode, users are automatically signed in using the DEFAULT account. In the multi-user
mode, the following form appears.

Username: admin

Password: seeess

Login window

71150

2. Enter the user name and password provided by the system administrator and click Sign in.

For more information on OpenL Studio Ul, see Introducing Rules Editor and Introducing Repository Editor. For

more information on the single and multi-user modes, see Security Overview.

Modifying User Profile

Openl Studio provides a drop-down dialog located in the top-right corner of the application, under the user
name, for updating user profile information, changing the password, and editing user settings. All data is
stored in the user profile and includes User details and User settings sections.

Ry
User details

User settings

Help

Sign out

Opening the user profile window
This section describes how to modify user profile information and includes the following topics:

* Modifying User Details
® Synchronizing with a Third Party Service
* Modifying User Settings

Modifying User Details

To manage user details, proceed as follows:
1. In Openl Studio, in the top-right corner of the window, click an arrow icon next to the username.

2. In the actions list, click User Details.

8/150

User Profile

Details Settings

Account
Username: userl
Emaul: userl@example.com
Mame
First Mame [Given Mame): John
Last Name {Family Name) : Doe
Display Mame: First Last w

John Doe
Change Password

Current password:
New password:

Confirm password:

Cancel

Viewing user details
3. To update user's first or last name, display name, or email, modify values as required.

If user data is retrieved from a third party system, such as Active Directory, these fields cannot be
edited.

4. To update the password, in the Change Password section, enter the current and new password values.

5. Click Save.
Synchronizing with a Third Party Service

When users are managed by a third party service, such as Active Directory, it is necessary to regularly check
that the data in the OpenL Studio user storage is synchronized with the data defined in the third party service.
Data is compared periodically or on specific events and if necessary, must be synchronized.

The following user information requires synchronization:

¢ first name
® |ast name

* display name

9/150

* email address
The following general guidelines apply:

¢ If the field value is synchronized with the third party service, the field becomes locked from editing.
¢ If the field is added locally and not synchronized, the field value remains available for editing.

The following synchronization rules apply:

¢ If the third party email address, first name, or last name value is empty or unavailable, the current email
address, first name, or last name is not emptied.

* |f the third party email address, first name, last name, or display name is not empty, the current values
for local user email address, first name, last name, or display name is changed to the value received
from the third party.

¢ If the display name value is empty or unavailable, the local display name is not modified.

An exception is the situation when the first or last name was changed.

¢ If the display name was set to “first name + space + last name”, it is updated to the new “first name +
space + last name”.

¢ |f the display name was set to the “last name + space + first name”, it is updated to the new “last name
+ space + first name”.

¢ If the display name is set to Other and its value in OpenL Studio is not empty, and in the third party
service, it is empty, upon synchronization, the display name set locally is not changed.

¢ |f the display name value is empty in OpenlL Studio and the third party service, but the first name and
last name values are not empty, the display name is set to “first name + space + last name”, regardless
of the pattern specified upon local user creation.

If this user was not created as a local user previously but instead, created upon the external user logon, the

display name value stays empty.
Modifying User Settings
To manage user settings, proceed as follows:

1. In OpenL Studio, in the top-right corner of the window, click an arrow icon next to the username.

2. In the actions list, click User settings.

10/150

User Profile

Details Settings

Table Settings

Show Header:

O

Show Formulas:

Testing Settings

Tests per page: 5 W
Failures Only: O
Compound Result: = |

Trace Settings

Show numbers without |:|
formatting:

Save Cancel

Viewing user settings
3. In the Table Settings section, identify whether table header and MS Excel formulas must be displayed.
4. In the Testing settings, select values for displaying rule test results.

By default, all test results are displayed with five test tables, or unit tests, and compound result is not
displayed. For more information on testing settings, see Running Unit Tests.

5. In the Trace Settings, specify whether numbers must be displayed without formatting.
Displaying the OpenL Studio Help

To display the OpenL Studio help topics, in OpenlL Studio, in the top-right corner of the window, click an arrow
icon next to the username and select Help.

Signing Out of OpenL Studio

11/150

To sign out of OpenL Studio, proceed as follows:

1. In OpenL Studio, in the top-right corner of the window, click an arrow icon next to the username.
2. In the actions list, click Sign out.

Introducing Rules Editor
This section briefly introduces Rules Editor and includes the following topics:

¢ Rules Editor Overview
* \iew Modes

For more information on tasks that can be performed in Rules Editor, see Using Rules Editor.

Rules Editor Overview

Rules Editor enables users to browse rule modules and modify table data. A default editor is displayed when
a user opens a table in a module.

Search... - REPOSITORY ADMIN DEFAULT v
o.. / master / Tutoriall - Intro to Decisio.. () Deploy Copy Update Export Create Table More v
™ &) = b4 B ¥ B Table Details Multi-module v

Edit Open Copy Remove Run Trace Create Test
Name Greeting2

Rules String Greeting2 (Integer hour) Add Property,
_ c1 | RET1
min <= hour and hour <= max|greeting + ", World!"
Integer min | Integer max String greeting

_ : Greeting
0 . 11| Good Moming
12 17 Good Afternoon
18 21 Good Evening
22 23 Good Night

Openl Studio Rules Editor

Rules Editor displays one module at a time. To switch between modules, select a module in the Projects tree
or use breadcrumb navigation for quick switching between projects or modules of the current project.

Projects /[Tutorial 1 - Introduction to.. Tutoriall - Intro to Decisio... {_)
By Type Current Project = 4 [
o Tuterial 1 - Introduction to Decizion Tables :OPY Remowe 3
= Decision
;F Ca All Projects Rules String Greeting2 {Intg
AW Dri , cl
¥IE Example 2 - Corporate Rating
3 i and hour <= max
rE Tutorial 7 - Introduction to Table Properties Integer max
o I
-

Rules Editor breadcrumb navigation

12/150

One rule project can contain several modules.

The following table describes Rules Editor organization:

Pane Description
Left . - . . ,
Displays the module tree providing a list of elements in the currently displayed rule module.
pane
Middle Displays contents of the table selected in the left pane and provides controls for modifying
pane table data, running tests, and checking test results.
Right) . .
Displays properties of the currently displayed table.
pane
Upper
part : . . N .
fth Contains toolbars with controls as described further in this section.
of the
window

The following table describes the Rules Editor toolbar controls:

Control Description
More w
The following table describes the available options:
Revisions - Revisions: displays project revisions.

Local Changes

Table Dependencies

Compare Excel files

- Local Changes: opens a page for reverting module changes.

- Table Dependencies: opens a graph displaying dependencies among tables
of the module.

- Compare Excel files: initiates a dialog for comparing Excel files.

Runs a simple search. For more information on performing searches, see
Performing a Search.

&

Refreshes OpenlL Studio with the latest changes in Excel files.

Initiates the table creation wizard.

Displays recently viewed tables instead of the module tree.

Returns to the module tree view.

Hides comment tables and dispatcher tables generated automatically when a
rule table is overloaded by business dimension property.

ik

Deploy

Deploys the project. For more information on project deployment, see
Deploying Projects.

Synchronizes and merges the updates made in the specified branches.

13/150

Control Description

Copies the project. For more information on project copying, see Copying a

Copy
Project.
Save Saves the changes and sets the project status to No Changes.
Update || Export Updates the current module or project with uploaded file or zip file. Exports

the current version of the module or project.

REPOSITORY Switches user interface to repository editor. For more information on

repository editor, see Introducing Repository Editor.

EDITOR Switches user interface to Rules Editor. For more information on Rules Editor,

see Using Rules Editor.

ADMIN Switches user interface to the Administration mode. For more information

on administrative functions, see Using Administration Tools.

View Modes

Openl Studio provides different modes for displaying rule elements. In this guide, modes are contingently

divided into a simple view and extended view.

To switch between views, in the top right corner, select User settings and use the Show Header and Show

Formula options.

When a table is opened in a simple view, OpenL Studio hides various technical table details, such as table
header and MS Excel formulas. An example of a table opened in a simple view is as follows.

Vehicle Age Premium Increase
<1 $400
1-4 $300
3-10 $250
$0

A rule table in a simple view

In the extended view, all table structure is displayed. An example of a table opened in an extended view is as

follows.
SimpleRules DoubleValue AgeSurcharge (Integer vehicleAge)
Vehicle Age Premium Increase
<1 3400
1-4 $300
5-10 $250
$0

A rule table in an extended view

Rule tables can be organized, or sorted, and displayed in the module tree in different way depending on the

selected value.

14 /150

Projects / Example 1 - Bank Rating
By Excel Sheet v Y

By Type

By Excel Sheet

By Category

By Category Detailed
By Category Inversed

Modes for sorting tables in the module tree

By default, tables are sorted by their location in Excel sheets.

Mode Description

The tree structure is rather logical than physical.

Rule tables are organized into categories based on the Category table property or, if the
property is not defined, based on the Excel table sheet names.

This view is simple. An example of a module tree sorted by the category parameter is as
follows:

By Category

+ Auto-Data
By + Driver-Data
Category 2 Emv
+ Policy-Data
+ Test-Auto
+ Test-Data

+ Test-Driver

+ Teszt-Policy

Module tree sorted by category

15/150

Mode Description

The By Category Detailed view displays modules sorted by the first value of the Category
property.

In the following example, the same module tree is sorted by Category Detailed and, for
example, Test > Auto category is displayed

in the Test node and Auto sub-node:

By Category Detailed

+ Auto
By + Driver
Category
Detailed

+ Env

+ Policy

= Test
+ Auto
+ Data
+ Driver

+ Policy

Module tree sorted by Category Detailed

The following example provides the module tree sorted by Category Inversed where
modules are sorted by the second value of the Category property:

By Category Inversed

+ Auto
= Data

By + Auto
Category + Driver

Inversed + Policy

+ Policy

Module tree sorted by Category Inversed

Note: If the scope in a Properties table is defined as Module, in the By Category view, this table is displayed
in the Module Properties sub-node as in the last example. If the scope is defined as Category, the table is
displayed in the Category Properties sub-node.

The two following modes display a project in a way convenient to experienced users, with module tree
elements organized by physical structure rather than logically, in an extended view.

Mode Description

16 /150

Mode Description

An example of a module tree displayed in extended view and sorted by type is as
follows:

By Type

+ Decision

+ Spreadsheet
By Type + Data

+ Test

+ Datatype

+ Vocabulary

+ Constants

Module tree sorted by type

The following tree is sorted by the order the tables are stored in the Excel file:

By Excel Sheet

+ {H Rating Algorithm
+ 3 Algorithm Tests
By Excel + i Balance Quality
Sheet - i Balance Quality Tests

| CapitalAdequacyScoreTest
+ {if Balance Quality in Dynamic

+ i Balance in Dynamic Tests

Module tree sorted by order in the Excel file

Introducing Repository Editor

Repository editor provides controls for browsing and managing Design repository. A user can switch to
repository editor by clicking the Repository control. Repository editor resembles the following:

177150

@ OpenL Studio EDITOR REPOSITORY ADMIN DEFAULT v

P

Design Deployment () Create Deploy Configuration
Projects
- | | Projects
+ | Example 1 - Bank Rating Name Branch Status Modified By ~ Modified At Actions
¥ (@ Example 2 - Corporate Rating master No Changes DEFAULT 12/02/2021 09:21:27 AM h X & A
+ |] Example 3 - Auto Policy Calculati %
master No Changes DEFAULT 12/02/2021 09:21:34 AM Y M = Al
+ 1] Tutorial 1 - Introduction to Decisic
N 9 o 3
[Tutorial 2 - Introduction fo Data T master Closed DEFAULT 12/02/2021 09:21:40 AM h B & A
+ =2 Tutorial 3 - More Advanced Decis Tutorial 1 - Intr ision Tables master Closed DEFAULT 12/02/2021 09:21:48 AM h X @& A
+ = Tutorial 4 - Infroduction to Columi Tutorial 2 - Introduct, master No Changes DEFAULT 12/02/2021 09:21:53 AM h X = A
+ 1.7 Tutorial 5 - Introduction to TBasic . -
Tutorial 3 - More Advanced Decision and Data Tables master No Changes DEFAULT 12/02/2021 09:21:58 AM h X = al
+] Tutorial 6 - Infroduction to Spreac E
o ’ N Tutorial 4 - Introduction to Column Match Tables master Mo Changes DEFAULT 12/02/2021 09:22:03 AM h % = A
+ 1] Tutorial 7 - Introduction to Table f
+ {2 Tutorial 8 - Introduction to Smart Tutorial 5 - Introduction to TBasic Tables master Closed DEFAULT 12/02/2021 09:22:08 AM h % @ A
|| Deploy Configurations. Tutorial & - Introduction to Spreadsheet Tables master Closed DEFAULT 12/02/2021 09:22:13 AM e ﬂl

Openl Studio repository editor

The following table describes repository editor organization:

Pane Description

Contains a tree of projects stored in Design repository and user's workspace.
Left pane Unlike Rules Editor, repository editor displays physical project contents in terms of files and
folders.

Displays content for the element selected in the tree. For each project, the following actions
are available:

- copying a project '
Middle - archiving a project
pane i
- closing a project A
r—

- opening a project

- deploying a project (}.
A user can switch to Rules Editor by clicking the Rules Editor control.

For more information on tasks that can be performed in repository editor, see Using Repository Editor.

Using Rules Editor

This chapter describes basic tasks that can be performed in Rules Editor. For more information on Rules
Editor, see Introducing Rules Editor.

The following topics are included in this chapter:

* Filtering Projects
* Viewing a Project
* Viewing a Module

18/150

* Managing Projects and Modules
* Defining Project Dependencies
* Viewing Tables

* Modifying Tables

* Referring to Tables

* Managing Range Data Types

* (Creating Tables by Copying

® Performing a Search

® (reating Tables

® Comparing Excel Files

* Viewing and Editing Project-Related OpenAPI Details
® Reconciling an OpenAPI Project

Filtering Projects

To limit a list of projects displayed in the Projects list, start typing a project name in the field located above

the list of projects.

Projects () Mare Projects () Mare w
C D)
Example 2 - Corporate Rating Tutorial 1 - Introduction to
Decision Tables

Corporate Rating
Tutariall - Intro to Decision Tables

Example 2 - Auto Policy
Calculation

AutoPolicyCalculation
AutoPolicyTests

Tutorial 1 - Introduction to
Decision Tables

Tutariall - Intro to Decision Tahbles

Filtering projects by Name
To get a full list of projects, delete filter text value in the field.
Viewing a Project

Rules Editor allows a user to work with one project at a time. To select a project, in the Projects tree, select the
blue hyperlink of the required project name. The project page with general information about the project and
configuration details appears in the middle pane of the editor.

19/150

Example 2 - Corporate Rating

Summary Sources
Branch: master
Modified By: DEFAULT
Modified At: 12/04/2019 05:27:19 AM
Modules
Corporate Rating _orporate Rating.xlsx

Dependencies

A project page in Rules Editor

If a particular project is not available, it must be opened as described in Opening a Project.

Viewing a Module

Rules Editor allows a user to work with one module at a time. To select a module, in the Projects tree, select
the black hyperlink of the module name. The following module information is displayed:

* tree in the left pane displaying module tables
* general module information displayed in the middle pane, including project and module names,
associated Excel file, number of tables, and module dependencies

If a particular module is not available, the project in which it is defined must be opened as described in
Opening a Project.

By default, a project is opened in the multi-module mode. This is a common production mode. In the multi-
module mode, all modules of the current project with all their dependencies are displayed, that is, modules of
projects defined as the project dependencies.

For more information on project and module dependencies, see OpenL Tablets Reference Guide > Project and
Module Dependencies.

The first opened module page is displayed right after the module is loaded, while loading of the whole project
continues in the background. The loading progress bar is displayed in the Problems section. Errors and

20/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#project-and-module-dependencies

warnings are displayed dynamically while more modules are compiled.

Warnings: Loaded 28% (10/36)

File 'module_ALL.xlsx’ does not match file name pattern 'module_%state?:’. Invalid property: state. Message: No enum constant org.openl.rules.enumeration.UsStatesEnum.ALL.

© 2021 Openl Tablets Report a problem

Loading progress bar

If a module is modified during loading, this module is re-compiled and project loading continues. When the
loading is complete, the progress bar is displayed for ten more seconds and then disappears.

The loading progress bar is not displayed for newly opened projects if a project has only one module or
multiple small modules which loading takes less than one second. The loading progress bar is also not
displayed if the project is already opened and fully compiled and the following actions happen:

* A page is refreshed using the browser refresh button.

* A user leaves the project by switching to the main Editor or Repository page and then returns to the
project without opening other projects in the meantime.

® A user switches between modules of the same project.

If a user clicks the refresh button in OpenL Studio, loading restarts and progress bar appears again. While
loading in process, the Run, Trace, Test, and Benchmark actions work only for currently opened module.
That is why the Within Current Module Only check box is selected and cannot be edited in the menu of
these actions while loading is in progress.

When loading is completed, the Within Current Module Only check box is cleared and becomes editable.

Managing Projects and Modules
This section explains the following tasks that can be performed on projects in Rules Editor:

* Editing and Saving a Project

® Saving a Project for Backward Compatibility
® Updating and Exporting a Project

* Copying a Project

* Exporting, Updating, and Editing a Module
® Comparing and Reverting Module Changes
* Copying a Module

Editing and Saving a Project

A project can be opened for editing and saved directly in Rules Editor.

1. To save the edited project, click Save | =7"©

Note: If a project is in the Local status, this option is not available in Rules Editor.

2. To modify the project in the Project page, modify the values as described in the following table:

21/150

Project details Available actions

General project

. . Put the mouse cursor over the project name and click Edit
information

) . For more information on OpenL version compatibility, see Saving a Project for
and configuration,

such as OpenL version Backward Compatibility.

compatibility Project name can be edited only for projects in a non-flat Git repository.
o - The project name will be changed in OpenL Studio only, while the folder name
description, project

remains unchanged.
name,

, For more information on properties pattern for the file name, see
and custom file name

processor Openl Tablets Reference Guide > Properties Defined in the File Name.

Project sources Put the mouse cursor over the Sources label and click Manage Sources

Put the mouse cursor over the Modules label or a particular module name and
Modules configuration click Add Module or Edit Module

or Remove Module

Project dependencies Manage dependencies as described in Defining Project Dependencies.

All changes are saved in the project file. For more information on this XML file, see the OpenL
Tablets Developers Guide.

Saving a Project for Backward Compatibility

For backward compatibility, a project can be saved in earlier OpenL versions, for example, 5.11.0 or 5.12.0.

It is important that the structure of and is changed after saving a project in a
previous OpenL version, and may result, for example, in disappeared Ul fragments.

Edit Project

CpenlL version .

compatibility | 513+ (Latest version) El
511+

Name -
h.13+ (Latest version)

Drescription

Selecting an OpenlL Tablets version for creating a backward compatible project version
Updating and Exporting a Project

To update or export a project, proceed as follows:

227150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#properties-defined-in-the-file-name
https://openldocs.readthedocs.io/en/latest/documentation/guides/developer_guide

1. To update a project directly in Rules Editor, in the top line menu, click Update and make the necessary

changes.
The Update button is available for projects in the In Editing status.

2. To export the project to the user’s local machine, for a project, in the top line menu, click Export and

select a project revision.

The default project version for export is the one that a user has currently open in Rules Editor. If it contains
unsaved changes, it is marked as In Editing, otherwise, it is called Viewing.

Exported project is downloaded as a archive.

Update project

File” o Add.. %K Clear Al

Example 2 - Corporate Rating_v2.zip

Dione

Cance

Importing and updating the project from a .zip file
Copying a Project

To create a copy of a project, proceed as follows:

1. In the top line menu, click Copy.

2. In the window that appears, enter the new project name.

3. Modify Comment if needed.

4. When you need to copy a project with revisions, select the Copy old revisions check box and provide
the necessary number of revisions in the Revisions to copy field.

5. Click Copy.

The new project appears in the project list.

237150

Copy project

Project Name: MUAT Copy Project
Don't link to arigin
project:

New Project Name: #

Comment: Copied from: MUAT Copy Project. B
Copy old revisions:
Revisions to copy: 1 =
Cancel
Copying a project

Exporting, Updating, and Editing a Module

A user can export, update, or edit a module directly in Rules Editor. Proceed as follows:
1. To upload a changed module file, for a module, in the top line menu, click Upload.

2. To export the module to the user’s local machine, for a module, in the top line menu, click Export and

select a module revision.

The default module version for export is the one that a user has currently open in Rules Editor. If it
contains unsaved changes, it is marked as In Editing, otherwise, it is called Viewing.

3. To modify module configuration, such as module name, path, and included or excluded methods, in the

Module page place the mouse cursor over the module name and click Edit

241150

Projects Example 2 - Corporate Rati.. Corporate Rating O / Update Export

By Type Y O .
) Corporate Rating -%f_r'_l

+ Decision

+ Spreadshest
_ Summary
+ TBasic
+ Column Match Project Example 2 - Corporate Rating
+ Data Path Corporate Rating.xlsx
+ Test Mumber of Tables 52
+ [Datatype
+ Cither

Initiating module editing

Edit Module
Mame Corporate Rating Eddited
Path# Corporate Rating.xlsx

Included Methods
(RegExp)

Excluded Methods
(RegExp)

Editing module information
Save

4. To save the changes, click Save

Notes: The 'Included Methods' and 'Excluded Methods' fields provide the ability to set method filters. For
more information, refer to the Rule Services and Customization Guide > Dynamic Interface Support

Comparing and Reverting Module Changes

OpenlL Studio allows comparing module versions and rolling back module changes against the specific date.
To compare module versions, proceed as follows:

25/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/#dynamic-interface-support

1. In the Projects tree, select the module.

2. In the top line menu, select More > Local Changes. The Local Changes page appears displaying all

module versions, with the latest versions on the top.

Compare

Local Changes (5)

Modified On

02/01/2021 04:37:55 PM

02/01/2021 04:37:33 PM

02/01/2021 04:37:19 PM

02/01/2021 04:32:19 PM

02/01/2021 04:32:08 PM

Revision Version

Action

Current

Hestore

197

Fesiore

Fesiore

Displaying the Changes window

When a project is modified, upon clicking the Save icon

=

, a temporary version of the module is

created, and it appears in the list of local changes. When project update is complete, clicking Save

removes all temporary versions from Local Changes, and a new version is added to the list of revisions.

Projects

Tutorial 1 - Introduction to..

@ OpenL Studio

master () Save

Copy Update

Clicking Save to complete project update and save changes as a revision version

3. To compare the changes, select check boxes for two required versions and click Compare.

26 /150

Local Changes (8)

Compare Modified On Action
D 02562021 03:09:23 PM Current
L 02/15/2021 03:09:14 PM Restore
02/15/2021 03:09:06 PM Restore
] D2/15/2021 03:05:40 PM Hestore
02/15/2021 03:08:31 PM Hestore
J 02/15/2021 03:03:19 PM Hestore
D 021572021 03:05:06 PM Restore
E 02/15/2021 03:07:57T PM Restore
D Revision Version Restore

Compare

Comparing module versions

The system displays the module in a separate browser window where changed tables are marked as
displayed in the following example.

- | g Policy-Premium
= Li'SimpIERUIES DoubleValue ClientDiscount (ClientTier clientTire)

“gyhame: -> SimpleRules DoubleValue ClientDiscount (ClientTier clientTier)

Tables with changes
4. To view the changes, click the required table.

The result of the comparison is displayed in the bottom of the window.

@ OpenL Studio

Show equal rows:

= |Gy Step2
[_‘;‘ISimpleLookup Double CarPrice (String country, String carBrand, String carModel)

File 1 fragment File 2 fragment

:Simplei_ookup_ Double CarPrice (String country, String carBrand, String carMu;j_El)' fSimpIeLuDk_up Double CarPrice (String country, String carBrand, String carModel)

USA $55150
Great Britain
Lithuania
Belarus

549350 |

The result of the module version comparison

271150

5. To revert module changes, for the required module version, click the Restore link and confirm the
changes.

When Restore is clicked, the corresponding changes are restored but this action is not added to the
history as a change.

Copying a Module

Openl Studio allows creating a copy of the existing module, in Editor, in either Project page, or in the
Module page. The following topics are included in this section:

* Copying a Simple Module
* Copying a Module Defined Using the File Path Pattern

Copying a Simple Module

To create a copy of a module, proceed as follows:
1. Do one of the following:

© To create a copy of a module using the Project page, in the project tree, select a project which
module must be copied, in the modules list, put the mouse cursor over the selected module

name, and click Copy Module
© To create a copy of a module using the Module page, in the project tree, select a module to be

copied, put the mouse cursor over the module name, and click Copy Module
2. In the window that appears, enter the new module name.
When the new module name is entered, the Copy button becomes enabled.
3. Optionally, edit the New File Name field value.
The file name can differ from the module name.

4. Optionally, to copy the module to the specific folder, in the New File Name field, enter the file name
and its location.

The original path cannot be modified other than by entering the specific path in the New File Name
field. For example, if the original module is located in , the new module will be copied to
cannot be changed, but a user can define a new file name, such as
and then the new module will be created in

5. Click Copy.

A new simple module is displayed in the modules list.

287150

Copy Module

From

Module Mame Bank Rating
As
Mew Module Name Bank Rating version 2
MNew File Path folder1
Mew File Mame Bank Rating vZ.xlsx

Cancel

Creating a copy of a module
Copying a Module Defined Using the File Path Pattern

If the module is defined using File Path Pattern, to copy such module, proceed as follows:

1. Do one of the following:

o To create a copy of a module using the Project page, put the mouse cursor over multiple

modules, click Copy Module , in the window that appears, click Select module, and in the
File Path drop-down list, select the name of the module to copy.
© To create a copy of a module using the Module page, in the project tree, select a module to

copy, put the mouse cursor over the module name, and click Copy Module
2. Click Select module and in the File Path drop-down list, select the name of the module to copy.
3. Enter the new module name.
4. Click Copy.

The new module is displayed in the modules list.

29/150

Copy Module

From

Module Name Auto-OK-01012014-01012014
File Path Pattern Auto-*
File Path Auto-OK-01012014-01012014 xlsx v
As
Mew Module Name Aute-MNY-01012014-01012014 W
Mew File Name Auto-MY-01012014-D1012014 . xlsx
Properties pattern for Auto-%hstatet-Seeffec tiveDate: Midddyyyy % i
a file name

Cancel

Copying a module with the defined file path and properties patterns

If the new module name does not match the properties pattern for the file name, no business dimension
properties will be applied to the rules inside the module.

Defining Project Dependencies

A project dependency can be defined when a particular rule project, or root project, depends on contents of
another project, or dependency project. Project dependencies are checked when projects are deployed to
the deployment repository. OpenL Studio displays warning messages when a user deploys projects with
conflicting dependencies.

To define a dependency on another project, proceed as follows:

1. In Rules Editor, in the project tree, select a project name.
2. If the project is not editable, make it editable as described in Editing and Saving a Project.

3. Put the mouse cursor over the Dependencies label and click Manage Dependencies
4. In the window that appears, update information as required and click Save.

30/150

Manage Dependencies

Project Hame All Modules
Auto Policy Cale with States
) Example 3 - Auto Policy Calculation o

o

I Tutorial § - Intreduction to Spreadsheet Tables

% Cancel

Managing project dependencies

If the All Modules option is selected in the multi-module mode, tables of all modules of the dependency

project are accessible from any module of the root project.

If the All Modules option is cleared or the single module mode is selected, the root project module has
access to the particular module of the dependency project only if an appropriate dependency is added in the
Environment table of the root module.

Note: Module names of the root and dependency projects must be unique.
Note: Dependency projects must be available in Rules Editor to make dependency work.

For more information on project and module dependencies, see the OpenL Tablets Reference Guide > Project

and Module Dependencies.

Viewing Tables

OpenlL Tablets module tables are listed in the module tree. Table types are represented by different icons in
Rules Editor. The following table describes table type icons:

Icon Table type

b |

Decision table.

1]

b |

Decision table with unit tests.

K=

Column match table.

o | EE

Column match table with unit tests.

2 Tbasic table.

i) Tbasic table with unit tests.
& Data table.

&l Datatype table.

31/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#project-and-module-dependencies

Icon Table type

Fe Method table.

I Unit test table.

2 Run method table.

5 Environment table.

5 Property table.

Table not corresponding to any preceding types. Such tables are considered comments.

EE Spreadsheet table, Constants table.

For more information on table types, see OpenlL Tablets Reference Guide. If a table contains an error, a small
red cross is displayed in the corner of the icon.

To view contents of a particular table, in the module tree, select the table. The table is displayed in the middle
pane. If the project is not in the In Editing status, the table can be viewed but cannot be modified.

Modifying Tables

Openl Studio provides embedded tools for modifying table data directly in a web browser. To modify a table,
proceed as follows:

1. In the module tree, select the required table.

The selected table is displayed in the middle pane in read mode.

_-ff B = a I o v £, Available Tests fRuns
Edit Cpen Copy Remaove Fun Trace Test Create Test Driver Age Type Test (2 test cases)
Gender Age Status
flale =25 woung Driver
Female =20 Young Driver
71+ Senior Driver
Standard Driver

Table opened in Openl Studio

2. To switch between simple and extended view, in User settings, select or clear the Show Header and
Show Formula options as required.

3. To switch the table to the edit mode, perform one of the following steps:

o Above the table, click Edit.
© Right-click anywhere in the table and click Edit.
o Double click the cell to edit.

Alternatively, the file can be edited in Excel. In the local mode, the rule file is opened in Excel, and
changes become available in OpenlL Studio upon Excel file saving. In the remote mode or if a demo-

32/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/

policy file exists, clicking the Open button initiates file download. After editing the file locally, it can be
uploaded back to the project in Rules Editor as described in Exporting, Updating, and Editing a Module
or via the repository.

The following table is switched to the edit mode:

B| S a3 (T |W (S| == B|lI|lT @iz E|E] @
Gender Age

eSS <20 Young Driver

Female =20 oung Criver

T+ Seniar Driver

Standard Driver

Table in the edit mode

The edit mode provides the following functional buttons:

Button Description

E Saves changes in table.

= Reverses last changes.

c Reapplies reversed changes.
== Inserts a row.

:;n

Deletes a row.

i Inserts a column.
g Deletes a column.

Aligns text in currently selected cell with left edge.

Centers text in currently selected cell.

Aligns text in currently selected cell with right edge.

b Make the text font bold.
I Applies italics to the cell text.
u Underlines the cell text.
& Sets the fill color.
L Sets the font color.

33/150

Button Description

Decreases indent.

ML
|

Increases indent.

4. To modify a cell value, double click it or press Enter while the cell is selected.
5. To enter a formula in the cell, double click it, perform a right click, and select Formula Editor.

Now a user can enter formulas in the selected cell.

6. To save changes, click Save = .
If a table contains an error, the appropriate message is displayed.

Problems =

Identifier "drivers' is not found.

drivers &

Example of an error in a table

The arrow under the message allows viewing all stack trace for this error.

Problems =

Error: Identifier "drivers’ is not found.
Openl Code Fragment:

at file:///home/eis/openl-tablets-demo/openl-demo/user-workspace/DEFAULT/Example%203%20-%20Auto% 2 0Policy %20Cal culation/AutoPolicyCalculation. xlsx?sheet=Cal culation&cell=E31 &start=2&end =8

org.openl.exception.OpenlNotCheckedException: Identifier 'drivers’ is not found.

at org.openl.binding.impl.IdentifierBinder.bind(IdentifierBinder.java:39)

at erg.openl.binding.impl.ANodeBinder.bindChildNode(AMNodeBinder.)ava: 27)

at org.openl.binding.impl.ANodeBinder.bindChildren{ANodeBinder.java:94)

at org.openl.binding.impl.ANodeBinder.bindChildren{ANodeBinder.java: 70}

at org.openl.binding.impl.BlockBinder.bind{BlockBinder.java:30)

at org.openl.binding.impl. ANodeBinder.bindChildNode(AModeBinder.java: 27)

at erg.openl.binding.impl.ANodeBinder.bindChildren{ANodeBinder.java: 34}

at org.openl.binding.impl.ANodeBinder.bindChildren{ANodeBinder.java: 70}

at org.openl.binding.impl.BlockBinder.bind{BlockBinder.java: 30)

at org.openl.binding.impl.ANodeBinder.bindChildNode{ANodeBinderjava: 27)

at org.openl.binding.impl.Binder.bind(Binder.java:94)

at org.openl.engine.OpenLManager.getBoundMode(OpenLManager)ava:250)

at org.openl.engine.OpenLManager.makeMethodWithUnknownType(OpenLManager.java: 135)

at erg.openl.rules.calc.SpreadsheetStructureBuilder.extractCellValue(SpreadsheetStructureBuilder.java: 254)

at org.openl.rules,calc.SpreadsheetStructureBuilder.extractCellValues{SpreadsheetStructureBuilderjava: 154)

at org.openl.rules.calc.SpreadsheetStructureBuilder.getCells{SpreadsheetStructureBuilder.java:93)

at org.operl.rules.calc.SpreadsheetBoundNode. finalizeBind{SpreadsheetBoundNode. java: 248)

at org.openl.rules.lang.xls. X|sBinder.finalizeBind{ XlsBinder.java:697)

at org.openl.rules.lang.xls.XIsBinder.bindInternal(XIsBinder.java:560)

at org.openl.rules.lang.xls.X|sBinder.processBinding{X|sBinder.java: 255)

at org.openl.rules.lang.xls.X|sBinder.bind(XIsBinder.java:219)

at org.openl.engine.Openl.CompileManager.processSource(Openl CompileManager.java: 223)

at org.openl.engine.OpenLCompileManager.getProcessedCode(0OpenLCompileManager.java: 84)

at org.openl.engine.OpenLCompileManager.compileModuleWithErrors{OpenLCompileManager.java: 70)

at org.openl.engine.OpenLManager.compileModuleWithErrors{OpenLManager.java: 181)

at org.openl.runtime.ASourceCodeEngineFactory.initializeOpenClass(ASourceCodeEngineFactory.java:87)

at org.openl.rules.runtime.RulesEngineFactory.initializeOpenClass(RulesEngineFactory.java: 200)

Error stack trace example

Referring to Tables

Openl Studio supports references from one table to another table. A referred table can be located in the
same module where the first table resides, or in the different module of the same project.

Links to the following tables are allowed:

* data table
* datatype table

347150

* rule table types

Links to the rule tables are underlined and marked blue. When a mouse cursor is put over the link, a tooltip
with method name and input parameters with types is displayed.

= $Equrt‘_-,TnCurrent.-issetsRatlnG roup * $Equrt}TnCurrent-issetsRathnalght

A tooltip for the linked method to a decision table

Links to the data and datatype tables are underlined with a dotted line and has an appropriate tooltip with
description.

SimpleRules DoubleValue FinancialRatioWeight (Fi iglRatio
financialRatio)

L Datatype FinancialRatio <String>
Cash Liguidity Ratio C

Quick Ratic 0.05

Current Ratio 042

Equity to Current Assets Ratio 0.21

Operating Profit Margin 0.21

Datatype Corporate

" r - corporatelD
atype Industry <String=
. i]-pe Iy £ corporateFullName

industry

ownership
numberdfEmployees
financialData
qualitylndicators

Links to the datatype tables from the decision and datatype table

All fields of the datatype tables are also linked and contain tooltips.

Value Dataiype Corporate

= IndustryScore | industry) Integer numberQfEmployees

= MonthlyAccountsTurnoverScore | numberdfEmployees, financialData monthiyAccountsTurnover, financial Data.monthlyCashTurnover |
=0.3

= Terroriemacore | qualitylndicators. isAnyinfolmvolvedTerrorism)

=0.35

ReputationScore { gualibdndicators_reputationOim heCorporateOrassociatedPearson)
A link to the field of the Corporate datatype table

Managing Range Data Types

OpenlL Studio provides a special tool, Range Editor, for adding and editing range data types, such as
IntRange and DoubleRange, in rule tables and test tables.

This section briefly introduces Range Editor and provides examples of its functionality.

35/150

The main Range Editor goal is to move to a single range format in Openl rules, namely, the *.." format. For
more information on ranges on OpenlL Tablets, see OpenL Tablets Reference Guide > Representing Range
Types.

Consider the following principles while working with Range Editor:

* The default range format is set to ".." in OpenL Studio.

* When a new range is created, the ".." format is used.

* When a range format other than ".." is edited, if only range values are edited, the format remains the
same.

If any editor control is used, for example, a check box or the Done button, the range format is set to "..".

The following example displays the decision table with data represented as a range:

Hour Greeting

0-11 zood Morning

12 -17 Good Afterncon

15-21 Good Evening
Good Might

Decision table with a range data type

In this table, the Hour column contains hours with the IntRange Data type. All range sells are filled except for
the last one. This example is used further in this section to demonstrate how Range Editor works.

The following controls are available in Range Editor:

* From — indicates the left border of the range

* To — indicates the right border of the range

* Include — indicates whether the border is included in the range
e ‘>’ —indicates values greater than the specified border

* ‘<’ —indicates values smaller than the specified border

* ‘=" —indicates a constant

e ‘-’ —indicates a range
To create a range, proceed as follows:
1. Double click the cell to be edited.

For example, edit the cell containing 18-21. The table is extended by the pop-up window with a set of
controls for editing the range.

36/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#representing-range-types

Rules String Greeting3 (Integer hour
ci RET1
hour greeting + *, World!"
IntRange b String gresting
Hour Greeting
0-11 Good Morning
12-17 Good Afterncon
18-21 Good Evening
Good Might
From = JO
Ld 23
22 =
(22 ..23)
Rv

Creating a range in Range Editor

2. In the From field, enter the left border of the range, which is 22 for the example described in this

section.
3. In the To field, enter the right border of the range.

In this example, the To value must be 24, but an erroneous value 23 is entered for further editing of this

border.
4. Clear the Include check box.
5. Click Done to complete.

The last cell in the Hour column is filled as follows:

Rules 3tring Greeting3 (Integer hour
C1 RET1
1oUr greeting + ", World!
ntRange h Siring greeting
Hour Greeting
0-11 Good Morming
12-17 Good Afternoon
18-21 / Good Evening
[22 . 23) Good Might

New range created in Range Editor
6. To modify the range in Range Editor, double click the cell with the [22-23) range.

The table resembles the following:

3717150

Rules String Greeting3 (Integer hour
ci RET1
hour greeting + *, World!"
IntRange b String greeting
Hour Greeting
0-11 Good Morning
12-17 Good Afterncon
18-21 (Good Evening
22.24 Good Might
From - TO
¢ =]
22 = b
22 .. 24
%

Editing a range in Range Editor

7. Select the To field, set the right border to 24, and select Include.

8. Click Done to save the work.

The range resembles the following:

Rules 3tring Greeting3 (Integer hour
Cc1 RET1
howr greeting + *, World!"
IntRange String greeting
Hour Greeting
0-11 Good Morning
12 -17 Good Afternoon
18-21 S Good Evening
22 24 Good Night

The range edited in Range Editor

A range can also be modified using '>’, ‘<" and ‘=" controls as described in the beginning of this section.

Creating Tables by Copying

A table can be created based on another table using one of the following methods:

* Copying the Existing Table
* Creating a New Version of the Table

* Creating a Table as a New Business Dimension Version

Copying the Existing Table

387150

To create a table as a copy of the existing table, proceed as follows:

1. In the module list, select a table to copy.

=
2. Click the Copy Table icon | =1 The system displays the Copy Table form with New Table selected by
default.

Copy CarPrice

Copy as | MNew Table r

Mame and Properties

MName * CarPrice2014

Save To

Tutariall - Intro to Decision Tables -= Intro

Copying the existing table
3. If necessary, modify the Name field value.

4. To change the workbook and worksheet where the copy must be saved, click the link in the Save To
area and in the corresponding drop-down list, select the required module and category.

5. To save the copied table in a new category, use the New option.
6. Click Copy to save your changes.

The table appears in the module list.
Creating a New Version of the Table

To create a new version of the existing table, proceed as described in Using Table Versioning. In that case,
dimensional properties of a new version are exactly the same as for the original one. OpenlL Tablets allows
creating an overloaded table from an existing one.

Creating a Table as a New Business Dimension Version

To create a table as a new business dimension version, proceed as follows:

1. In the module list, select a table and click the Copy Table icon.

2. In the Copy as list, select New Business Dimension Version.

3. Specify business dimension properties as required.

4. If necessary, modify the workbook and worksheet values in the Save as area.

39/150

5. Click Copy to save the table.

Performing a Search

Openl Studio provides search functionality to look through all module tables data for a particular project. The
following topics describe search modes in OpenL Studio:

® Performing a Simple Search
® Performing an Advanced Search

Performing a Simple Search

In the simple search mode, the system searches for a specific word or phrase across all tables within the
current module, the current project, or the current project and its dependency projects depending on the
selected option. To perform a simple search, in the Search field, enter a word or phrase and press Enter.

Starting a simple search

Openl Studio displays all tables containing the entered text. Above each table, there is the Open Table in
Excel link redirecting to the Excel file containing the entered text. The Edit Table link opens the table in Rules
Editor in the editing mode.

11 tables found

Hvicw Table
1% |open Table in Excel

Time for exemting Openl. Fules heavily depends on the complexity of co

Let's look at "Greetimg" mles from Tutorall which only difference are conl

Hicw Table
I8 |©pen Table in Excel

Fules String Greetingl (Integer honr)

1 RET1
nun == hour and hour = max greeting + ", World!"
Integer mun Integer max tang greeting

From To Gresting

0 12 Food Morung

12 12 Good Afternoon

18 22 Good Evermng

a2 24 Good Might

Hvicw Table
¥ |open Table in Excel

Fules Strng Gresting? (Integer hour)

1 EET1
henr b sresting + ", Woaldl "
Intezer mun Integzer max Stang greeting
From To Greetng

Search results

40/ 150

To search for any cell contents, right click the cell and in the context menu, select Search. The table is opened

in the read mode.
Performing an Advanced Search

Advanced search allows specifying criteria to narrow the search through tables. To limit the search, specify the
table type, text from the table header, and table properties as described further in this section.

1. To launch an advanced search, click the arrow to the right of the search window.

Advanced Search

Initiating the advanced search

2. In the Search field on the top, select whether search must be performed within the current module, or
within the project, or within the current project and its dependent projects.

@ OpenL Studio Search... -
Projects Example 1 - Bank Rating Scope

Current Module w
By Type Y 9 Current Module

Current Project
ALL (includes dependency projects)

+ Decision
+ Spreadshest Header contains
+ Data

Specifying search area

3. In the filter form, click the Table Types field and select the required table type or select Select All to

search in all table types.
4. In the Header contains field, enter the word or phrase to search for.

5. Expand the Table Properties list, select the required table property, and then click the Add button on
the right.

The text field for entering the property name appears.
6. Enter the property name.
7. In the similar way, add as many table properties as required.

8. To remove a property, click the cross icon to the right of the property.

41/150

Table Type

xls.dt

Header contains

Greeting

Table Properties

Category v Add

A filled form for advanced search
9. Click Search to run the search.

As a result, the system displays the tables matching the search criteria along with links to the relevant Excel
files and the Edit Table links leading to the table editing page.

Hvizw Table
B open Table in Excel

Fules DioathleVahie CarPrice (Car car, Address billingdddress)
effertiveDate | 1,109

properties expiratinnDate 171410
Fule Cl 2 HCL HC2 RET1
country region hrand model
Conntry String CarBrand String
. EMW Forcha
#Rule Country | Regloh | DrivessiZ4 sDrive30i 911 Carrera 45 911 Targa 4 911 Carrera Cabriolet 2009 Audi B 4.2 quattzo Auto
Fl Pacific West $51,650 | $45750 © $93,200 | $90,400 $27,000 $121,500
......... . _— E $55,000 $44 050 $93 200 $90,400 $27,000 $121,500
......... e S e ST e S5 $93200 1 $90,400 $27,000 $121,500
R4 England $53650 | $47,750 | $94,200 | $91.400 $28,000 $121,500
""""" ES | GreatBritasin | Wales = $53,630 | $47,750 | $95200 | $92.400 $89,000 $121,500
......... e Seotland | $53.650 $47.750 $96,200 £33, 400 $20,000 $121,500
R7 Minsk $56.650 | $40750 | 493200 | $90,400 $87,000 $121,500
......... A b $56.650 $49 750 $33,200 £90,400 $87,000 $121,500
""""" R Grodna $36E30 © $48,750 © $93.200 | $90,400 $87,000 $121,500

Advanced search result

Creating Tables
OpenlL Studio allows creating tables of the following types:

* datatype table
* vocabulary table
¢ data table

* test table

® properties table

42 /150

® simple rules table

Tables are created via the wizard initiated by clicking the Create Table button . The wizard
creates a table for the current module. The table is available for all included modules and modules linked by
dependencies. For more information on dependencies, see OpenlL Tablets Reference Guide > Project and
Module Dependencies.

The following topics are included in this section:

* (reating a Datatype Table

* (Creating a Data Table

* (Creating a Test Table and Defining the ID Column for Test Cases
* Creating a Simple Rules Table

Creating a Datatype Table

To create a datatype table, proceed as follows:
1. In Openl Studio, click Create Table.

2. In the list of table types, select Datatype Table and click Next.
Select table type

{E} Datatype Table

{:} Datatype Aliaz Table
O bats Table

O Test Table

{:} Properties Table

O Simple Rules Table

Mext

Creating a datatype table

3. Enter the data type name and if necessary, select the existing data type as a parent.
If a parent data type value is specified, the newly created data type will have access to all fields defined
in the parent data type as described in OpenlL Tablets Reference Guide > Inheritance in Data Types.

This option is unavailable if no custom data types are created in the module.

Enter name

Mame * b ul atatype

Farent type Employes +

Prese I et Cancel

43 /150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#project-and-module-dependencies
https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#inheritance-in-data-types

Specifying the data type name and parent type

4. To define data type fields, click Add parameter, specify values as required, and then click Next.

Add table parameters

5@ Add Parameter

Type Is Array Nanme
BigDecimal v [test X
IntRange v [test? X
Freaw Mt Carncel

Defining data type fields

5. To indicate the new datatype table location, in the Select destination window, select an existing sheet,
or in the New field, enter the new sheet name.

The Module value cannot be changed. All created tables go to the current module.

Select destination

Module * rules

Cateqory ¥

® Existing | Employee
'C' MNew

Pres Save Cancel

Specifying table location

6. Click Save to complete table creation. The datatype table is created and becomes available in OpenL
Studio.

Creating a Data Table

Creating a data table resembles creating a datatype table described in Creating a Datatype Table. Proceed as

follows:
1. In OpenlL Studio, click Create Table.

2. Select the Data Table item and click Next.

441150

Select table type

L & Datatype Table

O Datatype Alias Table
@ Data Table

O Test Table

O Properties Table

O Simple Rules Table

I et

Initiating data table creation

3. Select the table type, enter the table name, and click Next.

Enter table type and name

Type* | Loss] v

Marme * | LogzData

Presw I et Cancel

Defining table type and name

4. Define the table columns configuration. For the Loss1 type selected in the previous window, column
configuration resembles the following:

Data table columns configuration

date : Dizplay Mame = DATE
amount : Digplay Mame = AMOUNT
type : Display Mame = TY'PE
percent : Dizplay Mame = PERCENT

country : Dizplay Mame = COUMTRY

Prew M et Cancel

Defining column configuration

5. To indicate new data table location, in the Select destination window, select an existing sheet, or in the
New field, enter the new sheet name. The Module value cannot be changed. All created tables go to
the current module.

45/150

Select destination

Maodule * Tutarial_b_new

Category *

'@'Existing Intra (v

'O' Mew

Pres Save Cancel

Specifying table location
6. Click Save to complete table creation. The new data table is created and can be modified as needed.

Openl Tablets supports array value definition in data tables as described in OpenlL Tablets Reference Guide >
Representing Arrays.

Creating a Test Table and Defining the ID Column for Test Cases

This section describes how to create a test table and define the ID column for test cases and includes the
following topics:

* Creating a Test Table
* Defining the ID Column for Test Cases

Creating a Test Table

To create a test table, proceed as follows:
1. In Openl Studio, click Create Table.

2. Select Test Table and click Next.

Select table type

Datatype Table
Datatype Alias Table
Data Table

® Test Table
Properties Table
Simple Rules Table

Mext

Creating a test table

46/ 150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#representing-arrays

3. In the Select table window, select the rule table and click Next.

Select table

Table™ | Greeting2 v
AmPmTo24
Hr24TocAmPm
Region

Prev | Region1
RegionZ
Greeting1
Greetin%

Greeting4

Selecting a rule table to create a test table for

Note: If there is no rule table available in this module, a test table cannot be created, and an error

message is displayed.

4. In the Input name window, if necessary, modify the generated test table name and click Next.

Input name

Mame™ GreetingZTest

Fray Mext Cancel

Reviewing the test table name

5. To define the test table location, in the Select destination window, select an existing sheet, or in the
New field, enter the new sheet name. The Module value cannot be changed. All created tables go to

the current module.

Select destination

Module ® | Tutorial3 - Advanced Decision and Data Tables «

Category”

® Existing |Intro ~

MNew

Frav Save Cancel

Specifying table location

471150

6. To complete table creation, click Save. The test table is created and becomes available in OpenL Studio.

OpenlL Tablets supports array value definition in test tables as described in OpenL Tablets Reference Guide >
Representing Arrays.

Defining the ID Column for Test Cases

The ID column is not mandatory in a test table. A user can define the ID column and set the appropriate
unique value for each test case.

Test AmPmTo24 AmPmMToZ24Testv2
d ampmHr ampm _res
ID Hour AM/PM 24 Hr
TC1 3 AM 3
TCZ2 12 AM o
TC3 12 PM 12
TC4 3 PM 15

A test table with the ID column defined

If the ID column is not defined for the test table, default numeric values are displayed beside each test case.
When running a test table, to run the test cases, expand the additional settings for the Run button and select
the required cases.

ID Test Cases

TC1 3 AM

o TC2 12 AM

TC: 12 PM

v TC4 2 PM

Run

Running the specified test cases

To use ranges of IDs for executing the required cases, enable the Use the Range setting and in the Range of
IDs field, specify the ID values separated by dash or comma.

48 /150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#representing-arrays

|_"§ = i x 4 [2 Q) Target Table

Edit Open Copy Femove Run Trace Benchmark AmPmMToZ4
Test AmPmTo24 AmPmTo! Failures Only
1d ampmHr “" Compound Result
[} Hour AN
TG1 3 :
TCZ2 12 : Usethe Range o
163 12 ' Range of IDs TC1, TC3-TCE
TG4 9 ’
TCE <] f

TOR 3 : F{ﬁ
Run i

Specifying test cases ID range
Creating a Simple Rules Table

This section describes how to create a new simple rules table in OpenL Studio.
1. In Openl Studio, click Create Table.

2. Select Simple Rules Table and click Next.

Select table type

@] Datatype Table

O Datatype Alias Table
O Data Table

O Teszt Table

O Properties Table

@ Simmple Rules Table

Mewut

Initiating table creation
3. Enter table name and select the required data type to return.

4. Click Add Input Parameters and specify values as required.

49 /150

Enter the initial parameters

Table Mame* My Simple Rule
Feturn Walue Type® DoubleValue b
Type Is Array Nanme
String ~ [Drriverfge X
String + [Parital Status x

5 Add Input Parameters

Frew Mext Cancel

Specifying table parameters

5. When finished, click Next.

In the Construct a table window that appears, a blank simple rules table with the header constructed
based on the previously entered values appears.

Construct a table

SimpleRules DoubleValue MySimpleRule (String Driverfge, String IaritalStatus)
Driverige MaritalStatus RETURN

Tips
* For a cell value editing click left mmouse button
+ For an action with table click right mouse button on a cell

Pres M et Cancel

Adding data to a table

Now the table can be filled with data.

Construct a table

SimpleRules DoubleValue MySimpleFnle (String Driverfge, String IWaritalStatus)

DriverAge MaritalSiatus RETURN
Add Rule
Tips Insert Condition Before

* For a cell value editing click lef| Insert Condition After
+ For an action with table click rit Delete Condition

Add Property

Pres M et Cancel

Selecting an action from the context menu

6. Right click any cell and select one of the following actions:

50/150

Action Description

Appears after selecting a property in the drop-down list and indicating its

Add Property |
value.

Allows entering data. An example is as follows:

SirapleFules DavbleValue MySirpleFule (String Driverige, String WaritalStatus)

Driverige Marital Status RETURNN
VYoure Ditver Ilarried 200

Add Rule

Entering table data
This action can be repeated as many times as required.

Adds a condition column to the specified position. An example of the added

DriverOccupation condition column is as follows:

Insert Condition

SimpleRnles DiobleValue IySirmpleRule (String occupation, String Dimverdge, String IartalStatus)

Before - - - :

. DriverOccupation Driverige Marital Status
/ Insert Condition Teacher VounaDriver —
After IT SeniotDriver Single

Adding a condition column

BRETURIM

200
220

Delete Condition
/ Delete Rule

Removes a condition or rule.

7. When finished, click Next.

8. To indicate new table location, in the Select destination window, select an existing sheet, or in the

New field, enter the new sheet name.

The Module value cannot be changed. All created tables go to the current module.

9. Click Save to save the changes. The new simple rules table is created and appears in the project.

Comparing Excel Files

Openl Studio supports comparing contents of Excel files displaying tables and Excel elements that are

modified. To compare two Excel files, proceed as follows:

1. In OpenlL Studio Rules Editor, in the top line menu, select More > Compare Excel Files.

@ OpenL Studio

on to... O Copy Update Export More w

Tables Tutorial 2 - Introduction to Da
Tutorial2z - Intro to Data Tables

Tutorial 2 - Introduction to Data Compare Excel files

Initiating Excel comparison functionality

51/150

2. In the window that appears, click Add and select two Excel files to compare.

3. Click Upload and wait until file status is changed to Done.

@ OpenL Studio

s Add_ X Clear All

All_tables_type xlsx
Select 2 Excel Files: Done

All_tables_type2 xisx
Done

Show equal elements:]

Compare

Excel files ready for comparison
4. To display tables and other Excel file elements that differ in the selected Excel files, click Compare.

The list of tables and Excel elements is displayed, grouped by Excel sheets. Clicking on the table or
element in the list displays the changes in the section below.

@ OpenL Studio

Show equal elements: [] Show equal rows: Compare

- [mStept
= | ‘Rules Double DriverPremium (String driverAge, String driverMaritalStatus)
pname: -> Rules Double DriverPremium1 (String driverAge, String driveriaritalStatus)
| Rules String Greeting (Integer hour)
= | yStep2
| gy SimpleLookup Double CarPrice (String country, String carBrand, String cariodel)

= | %Person Info

| Datatype Person
SimpleLookup Double CarPrice (String country, String carBrand, String carModel) SimpleLookup Double CarPrice (String country, String carBrand, String carModel)
By Pore Cew Rome
74 sDRIVE35i 74 sDRIVE28i 914 Carrera 45 911 Carrera 4 - sDF]
USA $55,160 $47350 | $105630 $94,030 USA $55,150
Great Britain | $57,150 $49,360 $107,630 $93,220 GreatBritain $57,150
Lithuania $64,400 $57,150 $125 600 $110,030 Litania $64,400
Belarus $90,400 $83500 | $145,500 $130,500 Belarus $90,400
< > < >

Excel file comparison results

Elements and tables that changed the location or contents are marked with the asterisk icon ‘@. Added

elements are marked with the plus sign icon @ Removed elements or tables are marked with the
deletion icon %,

5. To view or hide equal rows in the table, select or clear the Show equal rows check box.

527150

6. To display all equal tables and Excel file elements in the selected Excel files, select Show equal
elements check box and click Compare.

All elements that are equal in the selected Excel files are displayed, grouped by Excel sheets. Elements that are
relocated, added, or removed are marked with an appropriate icon.

If contents of two Excel files with different names is completely identical, the File elements are identical

message is displayed.
Viewing and Editing Project-Related OpenAPI Details

When a project is generated from the imported OpenAPI file, it becomes available in Rules Editor.

The generated project contains information about the last file import date, name of the OpenAPI file, mode,
and modules names in rules.xml. This information is available in OpenL Studio, the OpenAPI section.

Projects openapi_test master O Deploy Copy Update Export More v
openapi_test
Algorithms openapi_test
Models
Summary Sources
Branch: master
Status
Modified By DEFAULT OpenAPI
Modified At: 11/24/2021 12:26:32 PM
Last Import At 11/24/2021 12:25:00 PM
Repository Design
OpenAFI File openapi (4).Js0n
Mode Tables generation
Modules Rules Module: Algorithms
_ Data Module Models
Algorithms
[‘- .+ someLookupBig5\(.+%) .+ SmartRule5Y(.+1)
OpenAPI project in Rules Editor, in the Tables Generation mode
It contains the following information:
Field Description
Last Date of the last upload of the OpenAPI file.
Import The OpenAPI file can be replaced in the Repository tab or generated or regenerated from rules
At tables and datatype tables.
OpenAPI
Fil Location and name of the OpenAPI file, such as openAPl.json and files/example.json.
ile
Last operation performed with this OpenAPI project.
- Tables generation mode means that the last performed operation is generation or
Mod regeneration of the project based on the OpenAPI file.
ode

For the Tables generation option, project reconciliation is done, too.
- Reconciliation mode is set to validate the project against the newly uploaded OpenAPI file

with a new name.

537150

Field Description

Rules)

Name of the module that contains rules.
Module
Data)

Name of the module that contains data types.
Module

The following topics are described in this section:

Generating an OpenAPI File from Rules and Datatype Tables for Reconciliation

Adding OpenAPI for Reconciliation to an Existing Project

Regenerating a Project from Another OpenAPI File
Updating the OpenAPI File

Generating an OpenAPI File from Rules and Datatype Tables for Reconciliation

If a project is not generated from an OpenAPI file and it is necessary to add the OpenAPI file, this file can be
generated in Rules Editor from the existing rules and datatypes tables. Proceed as follows:

1. In Rules Editor, open the project overview page.

2. Click the OpenAPI section.

OpenAPI

Initiating OpenAPI file generation

3. If an OpenAPI file does not exist, ensure that the Generate from Rules and Datatype tables and
Reconciliation options are selected.

54 /150

OpenAPI File Configuration

OpenAFI File @ Generate from Rules and Datatype tables
Source: *

(O Uploaded in the Repository

Mode: * @ Reconciliation i

Tables generation i

Cancel

Reviewing settings for the OpenAPl file generation

If the OpenAPI file already exists, the Uploaded in the Repository option is selected by default and the
file name is displayed in the field. If the file must be regenerated according to the current project
tables, the Generate from Rules and Datatype tables and Reconciliation options must be selected.

4. Click Import.

The file creation confirmation message is displayed. The OpenAPI file is added to the project and appears in
the OpenAPI section.

OpenAPl
Last Import At 11/24/2021 12:37:09 PM
OpendPI File: openapl.json
Mode Reconciliation

The OpenAPl file added to the OpenAPI section

Note that successful generation of the OpenAPI file requires that the project has no compilation errors and
tables contain data for the OpenAPIl methods.

Adding OpenAPI for Reconciliation to an Existing Project

If a project is not generated from the OpenAPI file, but it is required to add the OpenAPI file and generate
modules from it, proceed as follows:

1. Ensure that the OpenAPI file is uploaded to the project via the Repository tab.

2. In Rules Editor, click Click to Import OpenAPI File.

55/150

OpenAPI

Initiating OpenAPI file import
3. Enter the name of the OpenAPI imported file, such as example.json.

4. Select the Tables generation mode.

OpenAPl File Configuration

DpenAPI File () Generate from Rules ana Datatype tables
Source: ¥

@ Uploaded in the Repository

example.)son

Mode: * () Reconciliation

(@ Tables generation i
Rulez Module: * Algorithms
Data Module: * Maodels

Cancel

Selecting the generation mode
5. If necessary, modify the default values for the rules and data modules and click Import.

6. If no module with the entered name is found, set up the path to the generated file and click Import.

56 /150

Modules Settings

The following module doesn't exist and is going to be created:

Rules Module: Algarithms
v

rules/Algorithms.xdsx £

The following module doesn't exist and is going to be created:

Data Module: Models

rules/Models.xlsx f

Cancel

Module settings window, both modules are new

If a module already exists, it will be overwritten, and the corresponding warning message is displayed.
In this case, there is no option to define a file name.

Modules Settings

The following module doesn't exist and is going to be created:

Rules Module: Algorithms

rules/Algorithms.xlsx f

Warning! The following module already exists and all of its content is going to be ovenwritten.

Data Module Corporate Rating

Corporate Rating.xlsx

Import and overwrite [EEREE]Ts=1

Module settings window, one of modules already exists

7. Click on the Import and overwrite.

The rules and model modules are created or updated. The OpenAPI data is updated.

Regenerating a Project from Another OpenAPI File

57 /150

If a project is initially created from an OpenAPI file, it can be regenerated from another OpenAPI file. For
project regeneration, follow the steps described in Adding OpenAPI for Reconciliation to an Existing Project.
The name of the OpenAPI file is preset for regeneration.

Updating the OpenAPI File

When the project is generated from the OpenAPI file and reconciliation is done, the system automatically
validates the generated OpenlL Tablets rules and data types. If the file is updated in the Repository tab and
the name is not changed, reconciliation is completed immediately.

To reconcile a project using an OpenAPI file with a different name, proceed as follows:

1. Ensure that the OpenAPI file is uploaded to the project via the Repository tab.

2. In Rules Editor, click OpenAPI Import icon

OpenAPI L1l
Last Import At: 11/24/2021 12:25:00 PM
OpenAPI File: openapi (4).)son
Mode: Tables generation
Rules Module: Algorithms
Data Module: Models

Initiating OpenAPI import

3. In the Import OpenAPI File window, enter the OpenAPI file location, select Reconciliation, and click
Import.

58 /150

OpenAPl File Configuration

OpenAPl File () Generate from Rules ana Datatype tables
Source: ¥

@ Uploaded in the Repository
demo/openapi (5).json

Mode: * (@ Reconciliation i
() Tables generation i

Selecting an OpenAPI file for reconciliation

The project is validated using the newly imported file.

openapi_test

sSummary Sources
Branch: rmaster
Modified By: DEFAULT OpenAPI
Modified At: 11/24/2021 01:07:35 PM
. . Last Import At: 11/24/2021 01:07:18 PM
Repository: Design
OpenAPI File: demo/openapi (5).json
Mode: Reconciliation
Modules
Algorithms rules/Algorthms.xlsx

[4- .+ someLookupBigsh(.+%) .+ SmartRules\{.+%)

Models rules/Models.xlsx

Dependencies

Viewing results of the last reconciliation

Reconciling an OpenAPI Project

If an OpenAPI file is set for a project, during project compilation, the system automatically checks whether the
project matches the defined OpenAPI file. If the generated OpenAPI for the deployed project does not match
the existing OpenAPI file, errors and warnings are displayed. This process is called reconciliation.

Reconciliation does not expect exactly the same OpenAPI generated by the project and checks the following:

59/150

All paths defined in the existing OpenAPI file are generated by the project.

All paths generated by the project are defined in the existing OpenAPI file.

All operations for each path in the existing OpenAPI file are the same as operations in the generated
OpenAPI file for the correspond path.

Operation parameters in the existing OpenAPI file and parameters in OpenAPI| generated based on the
project for a corresponding operation are the same and all parameter types are compatible.

Schemas that are not a part of API are ignored in the reconciliation process.

All schemas in the existing OpenAPI file that are a part of APl must be generated by the project.

All schemas generated by the project must be defined in the existing OpenAPI file.

All fields defined in schemas must exist in schemas generated by the project.

All fields generated by the project for corresponding schemas must be defined in the existing OpenAPI
file.

Field types in schemas must be compatible.

OpenAPI type defined in the file OpenAPI type generated by the project

Integer (int32) Integer (int32)

Integer (int64) Integer (int32), Integer (int64)

Integer(no format) Integer (int32), Integer (int64), Integer(no format)
String String

String (date/date-time) String (date/date-time)

Number(float) Number(float)

Number (double) Number(float), Number (double)

Number(no format) Number(float), Number (double), Number(no format)
Boolean Boolean

Editing and Testing Functionality

This chapter describes advanced OpenlL Studio functions, such as table editing, performing unit tests, rule

tracing, and benchmarking. The following sections are included in this chapter:

Editing Tables

Using Table Versioning
Performing Unit Tests
Tracing Rules

Using Benchmarking Tools

Editing Tables

This section describes table editing and includes the following topics:

Editing a Comma Separated Array of Values
Editing Default Table Properties
Editing Inherited Table Properties

60 /150

Editing a Comma Separated Array of Values

Openl Studio allows editing comma separated arrays of values. A multi selection window displaying all values

appears enabling the user to select the required values.

RFules Doubledalue driverPremiomiDriver driver, String driverfge Type)

P -
ae == ageType

I:lﬁ-.lbanian
Arabic
DBalarussian
Bulgarian
Catalan
Chinasa
I:l Croatian
I:l Czech
|:| Danish

Editing comma separated arrays

Editing Default Table Properties

=
Crriver Premium
C3
tal5tatus {in.booleanValuell == contains states, driwe
: InrMatin in String[] state
Located State

in CA M

in CA M

notin CA MY

notin CA MY

in CA M

notin CA MY

This section describes table properties available in OpenL Studio. For more information on table properties,

see OpenlL Tablets Reference Guide > Table Properties.

If default property values are defined for a table, they appear only in the right hand Properties section, but

not in the table. In the following example, there are Active = true and Fail On Miss = false default

properties.
4 & B x
Edit Jpen Capy Rerove

b

Run

i =
i

Trace Create Test

Bales String Greeting (Integer hour)

properties A deseription
h|

1 2

. |
roin == hour | hour == max

Integer ruin | Integer max
From To
1] 11
12 17
18 21
22 23

Default table properties example

The mle table deterrmines appropriate greeting according to inpat hours.

EET1
greeting + ", World!"
String greeting
Greeting
Grood Morming
Cood Afternoon
GFood Evening
Grood Hight

Table Details
MNarne Greeting
Info

The rule table
determines
appropriate
greeting according
to input hours,

Crescription

Add Property

Default properties can be overridden at the table level; in other words, they can be changed as follows:

1. In the Properties section, click the default property to be changed.

Instead of the property value, a checkbox appears:

61/150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/table-properties

Dew
Fail On Miss

Save | Add

3 rToperty

Updating a default property
2. Select or deselect the checkbox as needed and click the Save button.

The property appears in the table with its new value.

Fales String Greeting? (Tnteger hour)

propeties | fmilonhiss true |
1 RET1
toin =0= hor and hor <= e greeting + ", World!"
Integer rman Integer ma String greeting
From To Greeting
0 11 Good Moming

Default property was updated by a user

Editing Inherited Table Properties

Module or category level properties are those inherited from a Properties table as described in OpenL Tablets
Reference Guide > Properties Table. In the Properties section of the given table, inherited properties appear
in a different color and are accompanied with a link to the Properties table where they are defined. The
values of the inherited properties are not stored in the table, they are displayed in the Properties section,

since they are inherited and applied to this table. Inherited properties can be overridden at a Table level, i.e.
they can be changed.

5|) = ® b » Table Details
Edit Open Copy Femove Run Trace
Mame ClientTierScore

............. Business Dimension
properties Lsregion MW NE,SE

Region NCSA,EU J
Client Tier Client Score
. LOB categoty_Policy- 1
Elite -120 Scoring_Lob
Preferred -50 IS Region MW ,NE,SE
o
Add Property

An example of inherited category-level properties
To change an inherited property, perform the following steps:
1. In the Properties section, click the inherited property to be changed.

2. Enter or select the required values from the drop-down list and click Save.

62 /150

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#properties-table

Table Details

Mame ClientTierScore

Business Dimension

Region NCSA E:
LOBE Select All

US Region | Lmericas

Save Add Eurcpean Union

Eurcpe; Middle
East; Africa

Asia Pacific; Japan

Updating an inherited property

The system displays the property in the table.

smartRules Double ClientTierScore (Policy policy)
region NCSA
properties usregion WY, NE,SE
Client Tier Client Score
Elite -120
Preferred -50
o

Inherited category-level property updated by a user
The following topics are included in this section:

* Editing System Properties
* Editing Properties for a Particular Table Type

Editing System Properties

By default, OpenL Studio applies system properties to each created or edited table. For information on how to
switch off this option, please refer to Managing Common Settings. The values of the System properties are
provided in the table and in the Properties section.

The modifiedBy property value is set using the name of the currently logged in user. The modifiedOn
property is set according to the current date. These properties are applied upon each save.

The createdBy property value is set using the name of the currently logged in user. The createdOn property
is set according to the current date. These properties are applied on the first save only while creating or
copying a table in OpenL Studio.

The createdBy and modifiedBy properties are only applied in the multi-mode as described in Security
Overview.

System properties cannot be edited in Ul. The OpenL Studio users can delete those properties if required.

63 /150

Rules Double driverAccidentPremium{Driver driver, String driverRisk)

maodifiedon 105268 2
properies modifiedBy ZNm
Cc1 RET1

accidentPremium * drivernumAccidents
Doublevalue accidentPremium
Per Accident Premium

driverRisk == risk
String risk
Driver Risk

160

An example of system properties
Editing Properties for a Particular Table Type

Some properties are only applicable to particular types of tables. When opening a table in OpenL Studio, the
properties section displays properties depending on the type of the table.

For example, such property as Validate DT is available for Decision Tables. That means it can be selected in
the drop-down list after clicking the Add link at the bottom of the Properties section. The following figure
shows properties applied to a Decision Table:

o =) = ® b) Table Details
Edit Open Copy Femaove Run Trace Create Test
Mame DriverEligibility
SimpleRules EligibilityType DriverEligibility {DriverType driverType, Boolsan Dev
hadTraining]
- - - Validate DT OFF

properties validateDT OFF
Driver Status Training Driver Eligibility Add Property
Young Driver Mo Mot Eligible
Senior Driver Mo Mot Eligikle

Eligible

Properties for the Decision table type

When opening a Data Table in the same project, these properties are not available for selecting from the
drop-down list in the Properties section.

_,T =) = ® Table Details
Edit Cpen Copy Femove
Mame policyProfilel
Data Policy policyProfilel
- ; Select property to add
Policy Policyl
Sara Category r
Drivers Spencer, Sara’s Son Info
2005 Honda Odyssey Category
) Description
Vehicles 2002 Toyota Gamry Taas
Client Tier Preferred Dev
Client Term Build Phase *

The Decision table properties that are not available for a Data table

64 /150

When performing the “Copy” action, properties unsuitable for the current table type do not appear in the
wizard.

To add a new property for the selected table, perform the following steps:

1. In the Properties pane, click the Add Property link.

Table Details
Mame DriverEligibility
Dev

\falidate DT OFF

Add :E_t

Add new property for the current table

2. Enter the required property or select it from the drop-down list and click the Add button.

Select property to add

| Effective Date v

ﬁ@;ﬂ Cance

Selected table property to be added

3. Specify the property value and then click the Save button to complete.

All steps are collected in the following figure:

Effectiv : =
Sae T 2/30/2019)

Séq% Add Property

Saving a new property for the current table

Using Table Versioning

The table versioning mechanism is based on copying the existing table and is initiated in OpenL Studio by
clicking the Copy button. Then select New Version in the Copy as list, enter the data as needed and click
Copy to save.

A new table version has the same identity, that is, signature and dimensional properties of the previous
version. When a new table version is created, the previous version becomes inactive since only one table
version can be active at a time. By default, all tables are active. The following is an example of an inactive table
version.

65 /150

VET=RIoN 002
properties active true ___,f
Gender Age Driver Status
Iale =25 Young Driver
Female <20 Young Driver
71+ Senior Driver
Standard Driver,

An inactive table version

Versions of the same table are grouped in the module tree under the table name. Clicking the table name
displays the active version. If all tables are set to inactive, the latest created version is displayed.

By Category =

+ Calculation

+ Client-Scoring
+ Domain

= Driver-Eligibility

= |3} DriverAgeType

iMo.0.2
% E| DriverEligibility
i I DriverRisk

+ Driver-Premium

Displaying table versions in the module tree

The table version is defined in a three digit format, such as 4.0.1. Table versions must be set in an increasing

order.

.03 Current: 0.0.2

Major |0
Minor |0

A4F 4k AF

Wariant |3

Entering a new version number

Performing Unit Tests

Unit tests are used in OpenlL Tablets to validate data accuracy. OpenL Tablets Test tables with predefined input
data call appropriate rule tables and compare actual test results with predefined expected results.

For example, in the following diagram, the table on the left is a decision table but the table on the right is a
unit test table that tests data of the decision table:

66 /150

SimpleRules Integer AmPmTo24 (Integer

AM/PM hour AM or PM
12 AM
1-11 AM
12 PM
1-11 PM

ampmHr, String ampm
24 hour
1)
=ampmHr
1z

=ampmHr+12

o

Test AmPm

ampmHr
Hour
3
1z
1z
3

To24 AmPmTo24Test
& MR _res
AM/PM 24 Hr
AN 3
Al 4]
PM 12
PM 15

Decision table and its test table

Openl Studio supports visual controls for creating and running project tests. Test tables can be modified like
all other tables in OpenL Studio. For information on modifying a table, see Modifying Tables. Test results are

displayed in a simple format directly in the user interface.

The following topics are included in this section:

* Adding Navigation to a Table
® Running Unit Tests
® (reating a Test

Adding Navigation to a Table

Openl Studio adds a view navigation link to the appropriate test table and vice versa. See the following

example:
_"ﬂ, = | i x [4 Lz‘ fe) Target Table e"'
Edit Open Copy Remove Run Trace Benchmark DetermineDriverPremium

Sara

Spencer, Saras Son

[T e T

Spencer, No Training

Standard Driver
Young Driver

Young Driver

Expected Eligibility Expected Risk

Eligible
Eligible
Mot Eligible

Standard Risk Driver
Standard Risk Driver
High Risk Driver

Navigation link to target table

Running Unit Tests

This section provides the methods used to run unit tests. The following topics are included in this section:

® Executing All Module Tests at Once

® Executing Tests for a Single Table
* Displaying Failures Only
¢ Displaying Compound Result

Executing All Module Tests at Once

67 /150

The system automatically executes all test runs, test cases, in every unit test in a module, including tests in

module dependencies, and displays a summary of results.

Test results display resembles the following sample:

DriverPremiumTest

PolicyPremiumTest

D MName of Policy Expected Score Expected Eligibility Expected Premium
1 + Puolicy (Policy1) « 0 «” Eligible ¥ 922.5
2o + Policy (Policy2) & 110 « Eligible o 2960

VehiclePremiumTest EE

D Car Expected Theft Rating Expected Injury Rating
1 o + ‘ehicle (2005 Honda Odyssey) " Moderate " Low

2 o + \ehicle (2002 Toyota Camry) o Low " Moderate

I¢f + Vehicle (1985 VW Bug) " High ¥ Extremely High

Tests: 3 5 per page Failures anly [] Compound Result []

D Driver Expected Age Type Expected Eligibility Expected Risk

13 (1) + Driver (Sara) " Standard Driver " Eligible & standard Risk Driver
2 o + Driver (Spencer, Sara's Son) " Young Driver " Eligible ¥ Standard Risk Driver
3o + Driver {Spencer, No Training) « Young Driver " Not Eligible «# High Risk Driver

Expected Eligibility
« Eligible
«” Eligible

" Not Eligible

Within Current Module Gnl

High Risk Driver

y O

Results of running all project tests

Test | M o
1. To run all module tests, click the Run Tests

Failed test cases are represented by # mark. Passed tests are represented by | mark.

By default, all tests are run in multi-module mode, and the system executes all tests of the project,

including project dependencies.

2. To run the tests in the current module and its dependent modules only, select the Within Current

Module Only check box in the button menu or test results page.

Test | 3| w _reate Table More «

within Current Module Only [
Tests per page 5 L'
Failures Only]

Compound Result []

Test Test into File

Defining test settings

68 /150

icon in the top line menu of Rules Editor.

In the example above, test results are displayed with five test tables, unit tests, per page. This setting is
configured for each user individually in User Profile as Tests per page setting.

3. To change the setting for a particular test run without updating user settings, click the arrow to the

-

v
right of the Run Tests - and choose a required number of Tests per page. There is an
alternative way: the same setting options are displayed on the top of the window after executing all
tests. The following picture provides an illustration:

Tests: 3 S per page Failures Cnly
1
PolicyCalculationTest BE .
D Mame of Policy 20 re Expected Eligil
at + Palicy (Palicy!) m SEEEE.0 7 Eligible
z + Palicy (Policy2) W 110 w Eligible

Number of tests per page setting

4. To export test results into an Excel file, in the Run or Test drop-down menu, select Run into File or Test
into File. The generated file contains both results and input parameters.

Executing Tests for a Single Table

This section describes test execution. Proceed as follows:

1. To execute all test runs for a particular rule table, select the rule table in the module tree and, in the
upper part of the middle pane, click Test .

Test results resemble the following:

Results of running AirBagsDiscountTest

AirBagsDiscountTest B

1D Type Discount
1 Ciriver Cnly o 0.1

2 Driver and Passenger o 0.15

3 Mane W 0

Results of executing all test runs for one rule table

If the table contains Value types, such as IntValue, the results are clickable and enable a user to view the
calculation history.

2. To test a rule table even if no tests have been created for the given table yet, proceed as follows:

69 /150

3. In the module treeg, select the required rule table and click the green Run arrow || above the table.

The form for entering required values to test rule table appears.

4 = = X b » =

Edit Cpen Copy Remove Run Trace Create Test
*

Y
SimpleRules Double VehicleDiscount (Airka ¥ IthiN Current Module Only

Air Bags Vehicle Skip Empty Parameters
Driver Flat Parameter Layout
Driver&Passenger
Driver&Paszengder&Side @ Tree Form JSON
airbagType
airbagType = | Driver w
v

Run Run into File

Testing a rule table without tests

4. To run a test for the currently opened module and its dependent modules only, ensure that the Within
Current Module Only option is selected.

5. In the pop-up window, click Run.

The results of the testing are displayed.

Results of running AirBagsDiscount

airBags Result

Driver Only - 0.1

Result of running virtual test

6. To export the results to an Excel file, click the "Run Into File" button. This action will generate an Excel
file named "test-results.xIsx", which includes two sheets: 'Result’ and 'Parameters'.
By default, the 'Parameters’ sheet lists each attribute's name and value on separate rows. For a more
compact table format, deselect the Flat Parameter Layout option.
To exclude any empty input values, select the Skip Empty Parameters checkbox. The following
examples illustrate how Flat Parameter Layout and Skip Empty Parameters affect the "test-
results.xlsx" file:

707150

ID 1
bank.bankFullName Commerzbank
bank.bankRatings[0].rating
bank.bankRatings[0].ratingAgency Fitch
bank.bankRatings[1].rating A

: . Standard &
bank.bankRatings[1].ratingAgency Poor's
bank.countryCode DE
bank.finData.consolidatedProfit 1488
bank.finData.equity 0
bank.finData.reporiDate
bank.finData.totalAssets 54299

"Flat Parameter Layout” = True, "Skip Empty Parameters” = False (default)

D bank. bank |bank country |bank finData. |bank.finData. (bank.finData. ha“”::z:: bank.bankRatings. |bank.bankRatings.
FullName |Code reportDate |wotalAssets |equity Profit ratinghgency rating
Fitch
Commerzh
i DE 754200 0 1455
ank Standard & Poor's |A

"Flat Parameter Layout” = False, "Skip Empty Parameters” = False

ID 1
hank.bankFullName Commerzbank
bank.bankRatings[0].ratingAgency [Fitch
bank.bankRatings[1].rating A

:) standard &
bank.bankRatings[1].ratingAgency Poor's
bank.countryCode DE
hank.finData.consolidatedProfit 1489
bank.finData.equity Q
bank.finData.totalAssets 04299

"Flat Parameter Layout” = True, "Skip Empty Parameters” = True

7. For test tables, to select test cases to be executed, proceed as follows:

b

-

Run
8. Navigate to the Run button above the Test table and click the small black arrow @ .

9. In the pop-up window that appears, select or clear the check boxes for the appropriate IDs, and to run

several particular test cases, define them in the Use the Range field.

71/150

j @ B x 2 B (;'_}',‘- Target Table

Edit Open Copy Remove Run Trace Benchmark DetermineVehiclePremium

Within Current Module Only [_]

Failures Only |

Compound Result []

Car. Expected The
1 | 2005 Honda Cdyssey I
2 | 2002 Toyote Camry Use the Range
3 1965 WW Bug

Range of IDs 1::3

Run Run into File

Select test cases via Range field to be executed
10. If necessary, specify whether the test must be run in the current module only.
11. In the pop-up window, click Run.

Only the selected test cases are executed.

Results of running VehiclePremiumTest

VehiclePremiumTest EEiaad

ID Car Expected Theft Rating Expected Injury Rating Expected Eligibility
14 + Vehicle (2005 Honda Odyssey) «¥ Moderate " Low ¥ Eligible
3 + \ehicle (1965 VW Bug) «" High " Extremely High ¥ Not Eligible

Result of selective testing

12. To export test results into an Excel file, click Test and select Test into File.
Displaying Failures Only

There are cases when a user wants to examine results of failed test cases only. For example, the project
contains a test with more than 50 test cases and a user just needs to know whether project rules are operating
correctly, that is, whether all test cases are passed. If a user runs the test, a huge table of results is returned,
which is difficult to review and find failures to correct the rule or case. For such situations, OpenL Studio
provides an option to display failed test cases only.

This option is configured for each user individually in User Profile as the Failures Only setting. There are
multiple ways to change the setting for a particular test run without updating user settings:

Test | N W
* C(lick the arrow to the right of the Run Tests and in a pop-up window that appears, clear

or select Failures only.

721150

b

Run
® Select the Test table, navigate to the Run button above the table, click the Run arrow {E and in
the pop-up window that appears, select or clear Failures only.

-

* Select or clear the Failures only setting that appears on the top of the window upon executing all tests
at once as displayed in Figure 107: Number of tests per page setting.

Additionally, the number of failed test cases displayed for one unit test can be limited. For example, a user is
testing rules iteratively and is interested just in the first several failures in order to analyze and correct them,
and re-execute tests, sequentially correcting errors. To do this, change All on an appropriate value next to
Failures per test label or first label (for method 3). The setting is available only if Failures only is selected.

Failurez Only

Failures per test m

Settings for displaying failed test cases only
Displaying Compound Result

The result of a rule table execution can be a single value or compound value such as spreadsheet. A test table
specifies what is tested, full result or particular parts of it, and their expected results of each test case. In the
following example, IncomeForecastTest is intended to check Minimal and Maximal Total Salary values in the
resulting spreadsheet:

Test |
bonusRate | sharePrice talAmount3 = talAmountSMaxSalary
Bonus Rate Share Price Min Total Salary Max Total Salary
15% 315 594 500 3108 675
100 525 594 500 5103950
5% 335 594 500 399 225

Testing tables with compound result on

After running the test, OpenL Studio displays each test case with input values and actual results marked as
passed or failed.

IncomeForecastTest

ID Bonus Rate Share Price Min Total Salary Max Total Salary
1 0.15 15 & 148500 & 185775
2 0.1 25 & 148500 & 188350
3 0.05 25 & 148500 & 190925

Testing spreadsheet result

In cases when test result is complex (compound), there is an option to display the full result of running test
cases as well, not only values which are being tested. It is configured for each user individually in User Profile

7317150

as "Compound Result” setting. If the option is switched on, the result of running IncomeForecastTest looks as

follows:
IncomeForecastTest ElEEES

Bonus Rate Share Price Min Total Salary Max Total Salary Compound Result
Salary
Shares

0.15 15.0 " 94500 " 108675 -
Bonus
MinSalary 45
MaxSalary Ef'_':

Displaying compound result

This setting for a particular test run (without updating user settings) can be changed in the same ways as it is
described in Displaying Failures Only.

Creating a Test

Openl Studio provides a convenient way to create a new test table.

When an executable table, such as Decision, Method, Spreadsheet, ColumnMatch, or TBasic table, is created,
the Create Test item becomes available.

4 = E x 2 3 =
Edit Cpen Copy Femove Run Trace Create Test
Vehicle Vehicle Score
Mot Eligible 100
Provisional 50
Eligible 0

Create new test table
Proceed as follows:
1. To create a Test table for the current table, click the Create Test button.
OpenlL Studio runs a two-step wizard for creating an appropriate Test table.

2. Enter test input values and expected result values to complete the Test table.
Tracing Rules

Openl Studio provides a rule tracing view for all appropriate OpenL Tablets methods. These methods include
the following:

e Al test tables

741150

® All Rule tables with the possibility of specifying input parameters
* Method tables with preset parameters

Tracing of a rule enables users to determine how results for complex rules are obtained.

Note: Before tracing, ensure that the browser does not block pop-up windows. Otherwise, trace results will
not be displayed. For more information on how to unblock pop-up windows, refer to the specific browser

Help.

When using the tracing functionality, users can check the result of each step of the rule and how the result
was obtained without creating test cases. For that, perform the following steps:

1. In Rules editor, open a rule table to be traced and click Trace - in the middle pane.
2. Enter parameters to be traced in the pop-up window.

3. If necessary, specify whether tracing must be applied to the rules of the current module and its

dependent modules only.

il

@ B x 4

Edit Open Copy Remaove Run Trace Create Test

Wikhi Y I B
SimpleRules DriverType DriverdgeType (Gender gen Within Current Module Only []

Gender Age Driver Status ® Tree Form O 150N
Male <25
gender age
Female =20
T1+
gender = Male b age =31

Trace Trace into File

Tracing a rule for a rule table

4. To use JSON data and prefill fields with data extracted from log or provided by developers, select

JSON.
Edit Open Copy Remaove Run Trace Create Test

Withi oy [
SimpleRules DriverType DriverAgeType (Gender geni Within Current Module Only |

Gender Age Driver Status () Tree Form ® 150N
Mals <25 r
Female <20 "

gender”: "Male",
71+ '_:age": 31

g

Trace Trace into File

Selecting the JSON option for tracing

The same functionality is available for running rules. Settings defined in rule deploy configuration are
applied to the JSON input as well. For example, if Provide runtime context is set to true, in JSON,

7517150

context must be defined. Thus, the same JSON request can be used in OpenlL Tablets Rule Services and
Openl Studio.

5. Click the Trace button.

If there is a set of test cases and the result of each step of the rule and how the result was obtained need
checking, trace the Test table as follows:

1. Open the required Test table.

2. To open a pop-up with test cases to be traced, click the Trace button.

]] £:: x b & Target Table

Edit Open Copy Bemaove Run Trace Benchmark DetermineDnverPremium

Within Current Module Only []

Use the Range]

Driver Expected Age Type ID Test Cases
115 Standard Dri
Sara ndard Driver < Diiver (Sara)
2 |Spencer, Sara'’s Son Young Driver
. g age = 38
3 |Spencer, Mo Training Young Driver

driverRisk = null
driverType = null

gender = Female
hadTraining = falze
maritalstatus = Single
name = Sara
numAccidents = 0
numDUl =0
numbovingiclations = 1

state = AZ
2 + Driver (Spencer, Sara's Son)

3 + Driver (Spencer, Mo Training)

Trace Trace into File

Tracing of a Test table
3. In the pop-up, select or deselect the test cases as needed.

All test cases can be checked or unchecked by using the checkbox on the left of Test Parameter(s).
4. If necessary, specify whether tracing must be limited to the current module only.
5. Click Trace to start the process.

The system displays the tracing results in a separate browser window as illustrated in the following
example:

76 /150

B Tioce - Gooc

Detailed trace tree

| : B SpreadSheet SpreadsheetResultDetermineDriverP

@ $Description$Driver = Unique Driver Id

@ $ValuesDriver = Driver{ driverType=null driver]
$Description$DriverType = Determine Driver st
$ValuesDriverType = Standard Driver
$Description$Eligibility = Determine Driver eligi
$ValuesEligibility = Eligible
$Description$DriverRisk = Determine Driver ris|
$Value$DriverRisk = Standard Risk Driver
$Description$DriverTypeScore = Determine Dri
$ValuesDriverTypeScore = 0
$Description$DriverRiskScore = Determine Driv
$Value$DriverRiskScore = 0
sDescriptionsDriverPremium = Determine Drive

®

®

]

®

®

@

°

o

®

®

o

> @ $ValuesDriverPremium = 0
@ $Description$DriverRiskPremium = Determine
@ $Value$DriverRiskPremium = 0
@ $Description$AccidentPremium = Determine Ac
@ $ValuesAccidentPremium = 0
@ $Description$Score = Calculate Driver Score
@ $ValuesScore = 0
@ $Description$Premium = Calculate Total Driver

> @ $Value$Premium = 0
- [EE SpreadSheet SpreadsheetResultDetermineDriverP
» 8 SpreadSheet SpreadsheetResultDetermineDriverP
»

= [Driver
age =38
driverRisk = null
driverType = nuil
gender = Female

hadTraining = false

: Context
Input parameters: maritalStatus = Single OER
name = Sara
numAccidents = 0
numDUl =0
numlovingViolations = 1
state = AZ
Step Description
Driver Unigue Driver Id
DriverType Determine Driver status by driver ags snd
gender
Eligibilty Determine Driver ligibility by Driver status
and whether Training is passed or ot
DriverRisk Deten er risk by numbers of DUI,
Aci and Moving Violstions
Returned DriverTypeScore Determine Driver Score by Driver status and
result: sligibilty

DriverRiskScore
DriverPremium

DriverRiskPremium

Determine Driver Score by Driver risk

€ Driver Premium by Driver status,
and stats

Determine Driver Risk Premium by Driver

AccidentPremium | Determine Accident Premium

Score
Premium

Caiculate Driver Score
Calculate Total Driver Premium

Value

@ demo.openl-tablets.org/webstudio/faces/pages/layout/frameView.xhtmI?title=Trace&ttreePage=faces/pages/modules/trace/tree xhtml&mainPage=faces/pages/modules/trace/showTraceTable.xhtml&first=true

HEE vA

Driver] driverType=null driverRisk=null name=Sara gendsr=Femals ags=38 maritalStatus=Single
stats=AZ numAccidents=0 numMovingViolations=1 numDUI=0 hadTraining=false }

Standard Driver

Eligible

Standard Risk Driver

00

00
0.0

00

00
0.0
0.0

Tracing results

The left side displays a tree consisting of rule tables as tree nodes and fired rule rows as tree leaves. Selected

Detailed trace tree option enables to view all rule calls.

* If that option is cleared, only successful calls will be displayed.

This option can only be used for a Decision table or if a Decision table is used in complex rules.

* If an element in the tree is selected, the corresponding rule table is displayed in the right pane.

The fired rule rows are highlighted using the specified color. The highlight color and transparency level

can be configured by clicking the

selected by default.

buttons above the rule table. Note that the gray button is

In addition, the right pane displays the actual parameters used in the particular rule call and the returned

result. The example above demonstrates the results of tracing a decision table. For other rule tables, the

picture slightly differs but the meaning is essentially the same.

For a decision table, the tracing results are displayed as follows:

* The rules that were traced are not highlighted and appear as white rows.

* Successfully completed or returned rules are boxed with green lines.

* The failed rules are displayed in red.

Using Benchmarking Tools

Openl Studio provides benchmarking tools for measuring execution time for all appropriate OpenlL Tablets

elements. In OpenlL Tablets, everything that can be run can be benchmarked too. Benchmarking is useful for

optimizing the rule structure and identifying critical paths in rule calculation.

The benchmarking icon is displayed above the table to be traced.

771150

j @ B2 o 2 L @ Target Table

Edit Open Copy Remaove Run Trace Benchmark DetermineDriverPremium

Within Current Module Only [

Use the Range]

Driver Expected Age Type Expecte ID Test Cases
1 |Sara Standard Driver
= Driver (Sara)
2 |Spencer, Sara'’s Son Young Driver
- 2 age = 38
3 |Spencer, No Training Young Driver

driverRisk = null
driverType = null
gender = Female

hadTraining = false

v

. g marital3tatus = Single
name = Sara
numAccidents = 0
numDUl = &
numiovingViclations = 1
state = AZ

2 + Driver (Spencer, Sara’s Son)

3 + Driver (Spencer, No Training)

Benchmark

Controls for measuring performance
For a test table, select the test cases as follows:
1. Open the required test table.

2. Navigate to the Benchmark button above the test table and click the small right-hand black arrow to
open a pop-up with test cases as needed.

3. Select or deselect the test cases as needed.

By default, all cases are selected. All test cases can be also checked or unchecked by using the checkbox
on the left of Test Parameter(s).

4. Click the Benchmark button within the pop-up.

Clicking the benchmarking icon runs the corresponding method or set of methods and displays the results in
a table.

78150

Results of benchmarking

MName Parameters Test Case(ms) TestCases/sec TestCases Runs{ms) Runs/sec
1 DriverPremiumTest 0.0472 21,204 z 0.141 7,068
2 PolicyPremiumTest 0.271 2,604 2 D.543 1,842
3 DriverPremiumTest 0.0448 23,237 z 0.124 7,446
4 DriverPremiumTest 0.0460 21,745 z D.138 7,248

Benchmarking results

Benchmark is displayed using the following parameters:

Parameter Description

Test Case (ms) Time of one test case execution, in milliseconds.

Test Cases/sec Number of such test cases that can be executed per second.

Test Cases Number of test cases in a Test table.
Runs (ms) Time required for all test cases of the table, or rule set, execution, in milliseconds.
Runs/sec Number of such rule sets that can be executed per second.

Openl Studio remembers all benchmarking runs executed within one session. Every time a new benchmark is
run, a new row is added to the results table. Benchmarking results can be compared to identify the most time
consuming methods. Select the required check boxes and click Compare to compare results in the results
table. Comparison results are displayed below the benchmarking table.

Results of benchmarking

Name Parameters Test Case(ms) Test Cases/sec TestCases Runs{ms) Runs/sec
1 DriverPremiumTest 0.0472 21,204 3 0.141 7,068 s
2 PolicyPremiumTest 0.271 3,684 2 0.543 1,842
3 DriverPremiumTest 0.0448 22,337 3 0.134 7,446 ’
4 DriverPremiumTest 0.0460 21,745 3 0.138 7,248 s

Compare Delete

1 DriverPremiumTestTestall 21,204 3 1.05

3 DriverPremiumTestTestall 22,337 1 1.00

4 DriverPremiumTestTestall 21,745 2 1.03

Comparing benchmarking results

Using Repository Editor

This chapter describes tasks that can be performed in repository editor. For general information on repository
editor, see Introducing Repository Editor.

7917150

The following topics are included in this chapter:

Browsing Design Repository

Filtering the Project Tree

Creating Projects in Design Repository
Opening a Project

Closing a Project

Saving a Project

Viewing Project Properties

Modifying Project Contents

Copying a Project

Removing a Project

Deploying Projects

Comparing Project Revisions
Exporting a Project or a File
Unlocking a Project

Browsing the Deployment Repository
Committing with Missing User Data

Browsing Design Repository

Repository editor displays all projects in user's workspace and Design repository. The project tree is organized

into the following categories:

Category Description
Projects Contains OpenL Tablets rule projects.
Denl Contains deploy configurations for deploying rule projects to deployment
eplo
P i y . repository.
Configurations

For information on using deploy configurations, see Deploying Projects.

Projects from all repositories are displayed in a common list that is sorted alphabetically.

The status of each project in the tree is identified by a specific icon. The following table describes the icons in

the project tree:

Icon Description
B Project is closed. It is available only in Design repository and must be opened to copy it to user's
workspace.
Project is opened for viewing. It is copied to user's workspace and can be modified.
= If the product is restored from the previous revision, its status is set to Viewing Revision,
otherwise its status is set to No Changes.
Project is edited by the current user. It is copied to user's workspace and is modified. Other users
W cannot edit the project.

To save changes, the project must be saved.

80/150

Icon Description

Project is closed by the current user but edited by another user (Closed — Locked). Current user
cannot edit the project.

Project is opened for viewing by the current user but edited by another user (Viewing Revision -
lek Locked).
Current user cannot edit the project but can browse the project in Rules Editor.

Project exists only in user's workspace but not in Design repository (Local). Other users do not see
- this project.

User can delete the project or import it into Design repository as described in the Creating Projects

in Design Repository.

Project is marked for deletion. In OpenlL Studio, deletion of a project takes place in the following
phases:
- Deleting a project: Project is removed from user's workspace and marked for deletion.
In this phase, the project can be restored using the undelete function.
= For information on deleting a project, see Deleting a Project.

- Erasing a project: Deleted project is permanently removed from Design repository.
After this phase, the project cannot be restored.
For information on erasing a project, see Erasing a Project.

Filtering the Project Tree
Projects in the repository editor are filtered the same way as in Rules Editor.

To filter projects by name, enter the name in the filter text box. All projects matching the name are displayed
in the Projects list.

To group projects by repository or tag types, click the Group Projects icon and select the required values.
For more information on tag definition for a project, see Managing Tags.

e Group Projects
- [] Projects
- = Example3-Auto-Policy Level 1: [Repository] v
AutoPolicyCalculation xlsx Level 2: | Domain v
Level 3: | LOB b
Cancel

Grouping projects by tags

81/150

To expand or collapse the repository tree, use the expand and collapse icons

To view archived deleted projects, click the advanced filter icon and clear that the Hide deleted projects
option.

Creating Projects in Design Repository

Openl Studio allows users to create new rule projects in the Design repository in one of the following ways:

Way Section
Create a rule project from a template Creating a Project from Template
Create a rule project from Excel files Creating a Project from Excel Files

Create a rule project from an OpenAPI file Creating a Project from OpenAPI file

Create a rule project from a zip archive Creating a Project from ZIP Archive
Import a rule project from workspace Importing a Project from Workspace
Create a rule project from repository Creating a Project from a Repository

Whatever the way used, new projects are created in the No Changes status that means they are open and can
be modified.

Projects with the same name can be created in different repositories. These projects cannot be in the same
status. If the first project is in the No Changes status, the second one is assigned the Closed status. After
closing the first project, the second can be opened.

Creating a Project from Template

This section describes how to create a project using a template and includes the following topics:

* (Creating a Project Using a Default Repository Template

* (reating a Project Using a Custom Template
Creating a Project Using a Default Repository Template

This is the easiest way to create a rule project in the Design repository that must be preferably used for
demonstration or introductory purposes.

While creating a project from template, use the following template types:

Template

Description
type

82/150

Template

Description
type
Include the following:
Simol - Sample Project is a very simple project consisting of one rule table and hence, one Excel
imple
P file.
Templates]
- Empty Project allows creating a project with an empty Excel file.
Open the project and create tables as needed.
Provide several simple projects demonstrating how OpenlL Tablets can be used in various
Examples i)
business domains.
. Represents projects designed to familiarize users with OpenL Tablets step-by-step, from
Tutorials

simple features and concepts to more complex ones.

Projects represented as Examples and Tutorials can be used not only to learn how they are organized and
work, but also to create user’s own projects from them.

To create a new project from template, proceed as follows:
1. In the top line menu, click Create Project.
The Create Project from window appears.
2. Clicks the Template tab.
Note: This tab is normally selected by default.

All project templates are organized into three areas: Simple Templates, Examples and Tutorials
described above in this topic.

3. Navigate to the required template and click its name.

The name appears in the Project Name field. The following example demonstrates creating a project
based on the example.

83/150

Create Project from
Template Excel Files Zip Archive OpenAPl Waorkspace Repository

:’giﬁ?tate .= Simple Templates
Empty Project
Sample Project
Examples

Example 2 - Corporate Rating

Example 3 - Auto Policy Calculation

Tutorials
b
Project Name: = Example 1 - Bank Rating
Repository: = -- Select a repository -- W
Cancel

Creating a simple project from a template
4. Select a repository.

If there is only one repository, it is selected by default. Otherwise, a list of repositories is displayed. If a
Git repository with non-flat structure is selected, the Path field with the / default value is displayed and
can be modified as required. The path is defined inside the repository and can start with or without /.

5. Click Create.

If the tag types are defined as described in Managing Tags, the tag pop-up window appears for
selecting a project tag. If the tag type is defined as optional, a project can be left with the tag None. If
the tag type is defined as extensible, new tags can be created in the pop-up window by clicking on the
required tag field and replacing its value. Otherwise, predefined tag values must be used.

lags
Domain: | Claims -
LOB: Auto -
Canceal
Selecting project tags

84 /150

A new project is created in Design repository. Initially, project structure corresponds to the selected
project template but can be constructed manually.

6. To construct the project structure, add folders and upload files as described in Modifying Project
Contents.

Creating a Project Using a Custom Template

A custom project template can be created and then used during new projects definition. To create a new
custom project template, proceed as follows:

1. If the OpenlL Studio home directory create the following directory:

\<OPENL_HOME>\project-templates

2. Create a subfolder with a template category name.
An example is

3. For project templates that store files with project rules, create subfolders.

For example,
will be presented as the MyRule1 template project in the category containing
the file.

85/150

118
[cache]
[git-settings]
[locks]

[project-templates]
[repositaries] \
[users-db]

[user-workspace]

Hwebstudio Create Project from...

Template Excel Files Zip Archive OpensPl Worksp

Project My Custom Templates a2
Template: * " B

N
MyRulez

Simple Templates
Empty Project
Sample Project

Examples

Example 1 - Bank Rating

Project Name: * MyRulel

Repository: = Design ik

Creating a custom project template
Creating a Project from Excel Files

A rule project in the Design repository can be created by loading one or more Excel files that contain OpenL
rule tables or entire rule projects.

Proceed as follows:
1. Click Create Project in the top line menu.
2. In the Create Project from dialog, click the Excel Files tab.
3. Click the Add button, locate the necessary Excel file in a file system and click Open.
4. If required, repeat the previous step to add more files for the project.

All files are listed in the File area.

86 /150

Create Project from...
Template Excel Files Zip Archive OpenAPI Workspace
File: * = Add... ¥ Clear All
EFLI Common Rules_xlsx
Clear
Done
EPLI Rating Rules xlsx
Clear
Done
Project Name: *
Repository: * Design e
Cancel

Creating a project from Excel files

A file can be removed from the list by clicking the corresponding Clear link. To delete all files, click
Clear All.

5. In the Project Name field, enter the name by which the project must be represented in Design
repository.

6. Select a repository.
For more information on available repositories, see Creating a Project from Template.
7. Click Create to complete.

If the tag types are defined as described in Managing Tags, the tag pop-up window appears for selecting a
project tag. If the tag type is defined as optional, a project can be left with the tag None. If the tag type is
defined as extensible, new tags can be created in the pop-up window. Otherwise, predefined tag values must
be used.

Creating a Project from OpenAPI file

87 /150

A rule project in the Design repository can be created by uploading the OpenAPI file.

The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to RESTful APIs which allows
both humans and computers to discover and understand the capabilities of the service without access to
source code, documentation, or through network traffic inspection.

The algorithm for generating a project from an OpenAPI file is described in the Appendix B: OpenAPI Project
Generation Algorithm.

The OpenAPI file must have a valid structure and a JSON, YAML(YML) extension.
To create a project from the OpenAPI file, proceed as follows:
1. Click Create Project in the top line menu.
2. In the Create Project from window, click the OpenAPI tab.
3. Click Add, select the required OpenAPI file in a file system, and double click it or click Open.

4. To remove an uploaded file, click Clear.

887150

Create Project from__.

Template Excel Files Zip Archive OpenAPl Waorkspace

File: * = Add...

Project Mame: *

Module Name for Models
Data Types: *

EEEI.ttl-El, f;-j;ph;::j::lle with rules/Models.xlsx
Eslcéusl:e:.:Name far Algorithms
Eﬁ?g:?: Module with rules/algorithms.xlsx

Repository: * Design e

Cancel

Creating a project from an OpenAPI file

5. In the Project Name field, enter the name by which the project must be presented in the Design
repository.

6. If necessary, modify the file location and generated modules name.
7. Select a repository.

For more information on available repositories, see Creating a Project from Template.
8. Click Create.

If the tag types are defined as described in Managing Tags, the tag pop-up window appears for selecting a
project tag. If the tag type is defined as optional, a project can be left with the tag None. If the tag type is
defined as extensible, new tags can be created in the pop-up window. Otherwise, predefined tag values must
be used.

89/150

Creating a Project from ZIP Archive

Openl Studio provides a control for loading rule projects archived in a ZIP file into Design repository. The
procedure resembles creating a project from Excel files described above although there are a few differences.

A project can only be created from a archive. The .rar or archives cannot be used.
1. Click Create Project in the top line menu.
2. In the Create Project from dialog, click the Zip Archive tab.

3. Click the Add button, locate the necessary zip archive and click Open.

Create Project from. ..
Template Excel Files Zip Archive OpenAPl Workspace
File: * > Clear All
EPLI Rules Project zip
Clear
Done
Project Name: * EPLI Rules Project
Repository: * Design B
Cancel
Creating a project from ZIP file
Project Name text box is automatically populated with the project name defined in if the

uploaded ZIP file contains or with the file name.
4. If necessary, modify the project name.
It will be updated in accordingly.

5. Select a repository.

90/150

For more information on available repositories, see Creating a Project from Template.
6. Click Create to complete.

If the tag types are defined as described in Managing Tags, the tag pop-up window appears for selecting a
project tag. If the tag type is defined as optional, a project can be left with the tag None. If the tag type is
defined as extensible, new tags can be created in the pop-up window. Otherwise, predefined tag values must

be used.
Importing a Project from Workspace

A new project can be created in Design repository by loading a project with the Local status from user

workspace.
1. Click Create Project in the top line menu.
2. In the Create Project from dialog, click the Workspace tab.

The system displays rule projects available in the workspace:

Create Project from...

Ternplate Excel Files Zip Archive OpensPl Workspace Repository

[Mame
|:I Corporate Scoring Rules
EPLI Rules

[] Fraud Detection Rules

=

Repository:

Cancel

Creating a project from Workspace
3. Select check boxes for projects to be uploaded.
4. To complete creation, click Create.

If the tag types are defined as described in Managing Tags, the tag pop-up window appears for selecting a
project tag. If the tag type is defined as optional, a project can be left with the tag None. If the tag type is
defined as extensible, new tags can be created in the pop-up window. Otherwise, predefined tag values must

be used.

Creating a Project from a Repository

91/150

A project existing in the Git repository can be imported into OpenL Studio as follows:

1. Click Create Project in the top line menu.
2. In the Create Project from dialog, click the Repository tab.
3. Select a repository and path and click Import.

Create Project from

Template Excel Fies Zip Archive OpenAPl Workspace Repository
Repository: Designl hd
Path: /abc/Example 2 - Corporate Rating/

Importing a project from a Git repository

If the tag types are defined as described in Managing Tags, the tag pop-up window appears for selecting a
project tag. If the tag type is defined as optional, a project can be left with the tag None. If the tag type is
defined as extensible, new tags can be created in the pop-up window. Otherwise, predefined tag values must
be used.

Opening a Project

An opened project is copied to user's workspace and becomes available for selection in Rules Editor. The
project is opened for viewing and can be modified if it is not locked by another user. When a user modifies a
project, its status is set to In Editing and it becomes locked for other users who now can only view it.

To open a project, in the project tree, select the project and, in the right pane, click one of the following
buttons as required:

Button Description

Open Opens the latest revision of project.

Open Revision Displays window where user can specify which project revision must be opened.

Any project revision can be opened, with the project status set to Viewing Revision, as follows:

* Opening a Project Revision Using the Open Revision Button
* Opening a Project Revision Using the Revisions Tab

Opening a Project Revision Using the Open Revision Button

To open a project revision using the Open Revision button, proceed as follows:
1. Click the Open Revision button.

92/150

2. In the Project Revisions field, select the required revision.

Open Revision

Project Name: Sample Project

Project Revision: = admin: 07/06/2020 05:53:01 PM o

admin: 07/06/2020 05:53:01 PM
user: 07/06/2020 05:52:23 PM
user: 07/06/2020 05:52:15 PM
admin: 07/06/2020 05:51:43 PM

admin: 07/06/2020 05:51:25 PM

Opening a project revision using the Open Revision button

3. Click Open.

Opening a Project Revision Using the Revisions Tab

To open a project revision using the Revisions tab, proceed as follows:
1. In the Projects tree, select a project.

2. Click the Revisions tab.

A list of revisions appears.

Cancel

Open Revision Close Copy Delete Deploy Compare Add Folder Upload File — Export

Properties Revisions Elements Rules Deploy Configuration

Technical revisions: D Search filter...

Modified By Modified At Comment Revision ID
DEFAULT 07/07/2020 01:38:34 AM Project Example 2 - Corporate Rating is saved. 479ac8 Q
DEFAULT 12/04/2019 05:27:19 AM Project Example 2 - Corporate Rating is created. fadia3 Q

| Open Revision 'DEFAULT: 12/04/2019 05:27:19 AM'

List of project revisions

3. Navigate to the revision that needs to be opened and click the corresponding magnifier icon in the

Action column.

4. In the information message, click OK.

If a project has the Viewing Revision status, the opened project revision becomes available for viewing and

modifying, not the latest revision.

If user tries to modify an old revision of the project, the system displays the warning message, “You are trying
to edit old revision of the project. Do you want to overwrite newer revision?” When user modifies the
old revision, it becomes the current version of the project, and its status changes to In Editing.

Revisions can also be accessed through Editor by selecting More > Revisions for a project.

93/150

The features Technical Revision and Search Filter are available in OpenL Studio when the repository type is
Git.

The Technical Revisions feature, when checked, allows users to see revisions that are not directly related to
the current project (for example, changes related to code updates or changes in other projects).

The Search Filter field helps users quickly locate specific revisions by searching through the comments,
modified by, and revision IDs.

Closing a Project

Closing a project deletes it from the user's workspace. No changes made to the project will be applied and
stored. From that point, the project is not available for selection in Rules Editor. Users can still browse closed
projects in repository editor.

To close a project, in the project tree, select the project and, in the right pane, click Close.

Saving a Project
A modified project is saved and copied from the user's workspace to Design repository as a new revision.
To save a project, proceed as follows:

1. In the project tree, select the project, and, in the right pane, click Save.

The Save changes window appears:

Save changes

Project Name: Example 2 - Corporate Rating
Current Revision: fsdfa3
Comment: Base rule is updated.|

Cancel

Save changes in a project
The number of a revision is updated automatically and is specified in the Next Revision field.
2. Enter comments if needed and click Save.

An editable project can be saved and closed directly from Rules Editor as described in Editing and Saving a
Project.

Viewing Project Properties

Each rule project has a set of properties displayed in the Properties tab when a project is selected.

94 /150

Properties Revisions Elemenis Rules Deploy Configuration
Mame: Example3-Auto-Policy

Branch: master b
Status: Mo Changes

Modified By: DEFAULT

Modified At: 06/08/2021 01:31:43 PM

Revision ID: Sabbe?

Repository: Design

Path: Example 3 - Auto Policy Calculation
Tags

Domain: Policy ¥
LOB: Auto >

Project properties

Properties, such as Name and Created At / Created By, are updated automatically by the system, and users
cannot edit them in the OpenL Studio Ul. However, a user can modify tags in this tab.

Note that in case of the Git repository, in the Modified By field, the user’s display name is used, not the
username, and the tooltip for this field displays the user’s email.

Modifying Project Contents

This section describes modifying the physical structure of the project and includes the following topics:

* (Creating a Folder

® Uploading a File

* Updating a File

* Deleting a Folder or a File
* Copying a File

Creating a Folder

To create a new folder in the project structure, proceed as follows:
1. In the project tree, select the parent folder in which the new folder must be created.
To create a root level folder, the project name must be selected in the project tree.
2. In the right pane, click Add Folder.

3. In the Add Folder window, enter the folder name and click Add.

Uploading a File

95/150

To upload a file to a project folder, proceed as follows:
1. In the project tree, select the folder where the file should be uploaded.
To upload a file to the root level, the project name must be selected in the project tree.
2. In the right pane, click Upload File.

The Upload File window appears:

Upload File
File * o Add.
File
name™
Cancel
Uploading a file

3. Click Add in the File area and select the file to be uploaded.
4. Click the upper Upload button (with a green arrow).
5. In the File name field, enter or modify the name of the file to be used in Design repository.

6. Click the Upload button at the bottom.
Updating a File

To update a file of a project via repository editor, proceed as follows:

1. In the project tree, select the file to be updated and, in the right pane, click Update file.
2. In the window that displays, click Add and choose the required file for updating.

3. Click the Upload button to load the file.

4. Click Update to end the action.

Deleting a Folder or a File

96 /150

To delete a folder or a file in the project structure, proceed as follows:
1. Perform one of the following steps as required:

© Expand the project tree, select the folder or file to be deleted and, in the right pane, click Delete.

Add Folder Upload File Delete

Properties Revisions Elements

Folder Name Folderi

Deleting a project element

© To delete an element inside the parent folder, select that folder, click Elements to expand the

folder and then click Delete ¥ at the right of the item to be deleted.

Properties Revisions Elements

Type MName Actions
= OpenL_table types xlsx x
=l Openl_table types2. xlsx x
= Openl_table types23 xlsx x
= Test M.xlsx ®

Deleting project elements from the Elements tab

2. In the confirmation window, click OK.
Copying a File

A user can create a copy of a file using the repository editor. The current revision of the file or any revision
stored in the repository can be used for copying. Proceed as follows:

1. Select a project that contains a file to copy and in the files tree, select the required file.

Copy file

2. In the upper left corner of the page, click Copy file

3. In the window that appears, select the Current Revision or clear it and in the File Revision field, select
a value.

4. Optionally, enter the New File Path property value.

5. In the New File Name field, enter the file name.

97 /150

Copy file

From
File Mame hain. xlsx
Current Revision

File Revision 1 v

As
Mew File Path

Mew File Name * hain verZ xlsx

Cancel

Copying a file in repository editor
6. Click Copy.

The newly created file appears in the file tree.

Copying a Project

Copying a project creates a new project with identical contents and a different name in Design repository. This
function can be used for copying local projects to Design repository with a different name.

To copy a project, proceed as follows:
1. Perform one of the following steps as required:

© In the Projects tree, select the required project and, in the right pane, click the Copy button.
© Click Projects in Navigator to get a list of projects, navigate to the project you want to copy and

click the corresponding Copy item ™ on the right.
2. In the Copy Project window, enter the new project name.
3. Select whether a new project must be linked to the origin project.

In case of linked projects, a new project branch is created. For more information on branches, see
Working with Project Branches. For unlinked projects, if there are mandatory tag types, tags must be

defined for a new project.
4. Specify whether old revisions must be copied to the newly created project.
5. If necessary, select a repository and specify the path to the destination project.
A project can be copied to another repository with the same or a new name.
6. Optionally, provide comments.

98/150

7. Click Copy.

The new project appears in the list of projects.

Removing a Project
Removing a project is executed in the following phases:

* Deleting a Project
® Erasing a Project

Deleting a Project

A deleted project is removed from user's workspace and marked as deleted in Design repository. All users can
see that a project is deleted. Physically, it still remains in Design repository.

Note: Projects in the Local status that were not uploaded to Design repository will be removed physically and

cannot be restored.
To delete a project, proceed as follows:
1. Perform one of the following steps as required:

© In the Projects tree, select the project and, in the right pane, click Delete.
o Click Projects in Navigator to get a list of projects, navigate to the project you want to remove

and click the corresponding Delete item % on the right.
2. In the confirmation window, click Delete or OK.
Deleted projects, except for those in the Local status, can be restored by using the Undelete button.

To make deleted projects visible, uncheck the Hide deleted projects checkbox in the filter pop-up
window, which appears after clicking the Filter button above the Projects tree, and click Apply.

To restore a deleted project, proceed as follows:

3. Navigate to the deleted project in the Projects tree.

4. Click the Undelete button in the right pane.

5. Click Undelete in the confirmation window.
Erasing a Project
Erasing a project permanently removes it from Design repository.
Warning: Erased projects cannot be restored.
To erase a project, proceed as follows:

1. Delete the project as described in Deleting a Project.

2. Ensure that the Hide deleted projects option is cleared.

99/150

3. In the Projects tree, select the project and, in the right pane, click Erase.

4. If the project is erased from the non-flat Git repository, to delete a project from the repository project
tree but keep it in the Git repository, ensure that the Also erase it from repository check box is
cleared.

In this case, it can later be imported into the repository as described in Creating a Project from a
Repository.

If this check box is selected, the project is erased from both repository project tree and Git repository
and becomes no longer available for import.

5. In the confirmation window, click Erase.
Deploying Projects
This section describes tasks related to deploying rule projects to deployment repository.
The following topics are included in this section:

® Creating a Deploy Configuration

* Defining Projects to Deploy

* Deploying a Deploy Configuration

® Opening Deployed Configurations

* Redeploying Projects

* Configuring Additional Rules Deploy Configuration Settings
* Defining Rule Service Version

Creating a Deploy Configuration

Deployment to deployment repository is performed by using deploy configurations. A deploy configuration is
a list of rule projects and specific project revisions to be deployed together to deployment repository. Deploy
configurations are useful for recording the history of project deployments.

Deploy configurations are listed in the Deploy Configurations tree. Like rule projects, deploy configurations
are stored in Design repository and can be versioned.

To create a deploy configuration, proceed as follows:
1. Click Create Deploy Configuration in the top line menu.
2. In the New Deploy Configuration window, enter the deploy configuration name and click Create.
The new deploy configuration appears in the Deploy Configuration tree.

3. Define deploy configuration projects as described in Defining Projects to Deploy.
Defining Projects to Deploy

A Project to Deploy is a reference to one specific revision of a rule project to be included in the deploy
configuration. Project to Deploy must be added to the deploy configuration specifying which rule projects and
project revisions are deployed.

100/ 150

To add a new project to deploy to the deploy configuration, proceed as follows:

1. In the Deploy Configurations tree, select the deploy configuration and, in the right pane, select the
Projects to Deploy tab.

Properties Revisions Projects to Deploy

Selected MName Revision Message Actions

EPLI Applic aticn 2

Deploy configuration with projects to deploy
The Projects to Deploy tab displays existing projects to deploy of the selected deploy configuration.

2. To add a new project to deploy, click Add and specify the repository, project name, branch, and revision
to be included in the deploy configuration.

Add project
Repository: * | Design L
Name: * Tutorial 1 - Introduction to Decision %
Branch: master w
Revision ID Modified By Modified At Comment Action
b77809 DEFAULT up:;;u'rzum Hast2 Project Tutorial 1 - Introduction to Decision Tables iz saved.
5 P
ecccab DEFALULT g-:;;l_.leilm H253 Project Tutorial 1 - Infroduction to Decision Tables is saved.
2 23 i i s i iz i
5513 DEFAULT 0411272021 11:23:112 Project Tutorial 1 - Infroduction to Decizion Tables iz
"""" PM created.
Cancel

Adding a project to deploy
3. Repeat this procedure to add as many projects as required.
Deploying a Deploy Configuration
To deploy a deploy configuration, click Deploy.

Note: The Deploy button is disabled if deploy configuration is in the In Editing status.

101 /150

Select a deployment repository

Dreployment b

Cancel

Deploying configuration to deployment repository

The specified projects are deployed to deployment repository and a deployment message is displayed.

Configuration 'Example 3 - Auto Policy Calculation’ is successfully
deployed with id '"Example 3 - Auto Policy Calculation” to repository
'Deployment’

Deployment message

Note: Deploy configuration cannot be deployed if any dependency projects are missed in it. Check messages
on the Projects to Deploy tab.

Opening Deployed Configurations

Deploy configurations provide the means for tracking the deployment history of project revisions. OpenL
Studio provides functionality for quickly opening the deployed configuration revisions. This is especially useful
when some time has passed since deployment and a review of files during specific deployments is required.

To open the specific project revisions included in a deploy configuration, proceed as follows:

1. In the Deploy Configuration tree, select the deploy configuration.

2. In the right pane, select the Projects to Deploy tab.

3. In the Selected column, select the check boxes for projects to be opened.
4. Click Open.

The selected project revisions are opened in repository editor.
Redeploying Projects

Openl Studio provides a function that allows a simple update and redeployment of many related deploy
configurations when a particular rule project is modified. This function considers the revision of the opened
rule project and works correctly, even with older project revisions.

To update related deploy configurations and redeploy a rule project, proceed as follows:
1. In the Projects tree, select the modified rule project.
2. In the right pane, click Deploy.
Note: The Deploy button is disabled if the selected project has the Local status or if it is edited.

The Auto Deploy window appears listing all existing deploy configurations which'’s latest revision
contains a reference to the selected rule project. Deploy configurations marked for deletion are not

102 /150

displayed.

Auto Deploy
Repogitory: | Deployment ¥
Deploy Configuration Meszage
Example 2 - Corporate Create deploy configuration and
Rating deploy

Cancel

Deploying a project

The Message column displays the current status of displayed deploy configurations. If a particular
deploy configuration cannot be deployed, the check box is gray. Possible reasons for a deploy
configuration to be disabled are the following:

© The deploy configuration is saved.
© The deploy configuration is locked by another user and cannot be updated.

If the selected rule project is not referenced by any existing deploy configuration, the system offers to
create a new deploy configuration containing only the rule project with an identical name.

3. Select check boxes for the deploy configurations that must be updated and deployed.
4. Click Deploy.

Update and deployment results are displayed in the user interface.

Deploy configuration "Example 2 - Corporate Rating’ is successfully
updated

Project "Example 2 - Corporate Rating' is successfully deployed with
d 'Example 2 - Corporate Rating' to repository 'Deployment’

Redeployment results

Deployment functionality is also available in the Rules Editor.
Configuring Additional Rules Deploy Configuration Settings

Deployment rules can be added before deploying a project to deployment repository. If a project already has
the configuration file, it can be edited via the Rules Deploy Configuration menu.

Proceed as follows:
1. In the top line menu, click Rules Deploy Configuration.

2. Click Create rules deploy configuration.

103 /150

3. In the window that appears, enter the following information about the rules:
© Provide runtime context.
© Use the Rule Service runtime context.
© Define variations.

o Create services specifying the versions of web services to support, which is either the RESTful
service, or RMI, or both of them.

© Enter the service name.
The service name is displayed for a deployed project only in the embedded mode.
o Define the service class.
o Define an RMI service class.
o Define the service version.
For more information on service version definition, see Defining Rule Service Version.
© Enter URL of the service.
© In the Template class field, define Annotation template class.

Note: In OpenlL Tablets versions prior to 5.24.1, separate fields for Intercepting template class
and Annotation template class are supported. Since Annotation template class completely
covers Intercepting template class and have a higher priority, from 5.24.1, only Annotation
template class is displayed in the Template class field. If the existing configuration have both
Annotation template class and Intercepting template class, only Annotation template class
is displayed on Ul and saved in the file after editing.

Exception: For projects with OpenL version compatibility and version prior to 5.16, only the
Intercepting template class: field is displayed instead of Template class.

o Define comma separated service groups.
© Add configuration description to the XML file.

For more information on the Rules Deploy Configuration tab settings configuration, see OpenL
Tablets Rule Services Usage and Customization Guide > Service Configurer.

4. Click Save Configuration.

The selected rules are displayed in the Rules Deploy Configuration tab.

104 /150

https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/#service-configurer

Create Deploy Configuration

Open Revision Close Save Copy Delete Compare Add Folder Upload File Export

Properties Revisions Elements Rules Deploy Configuration

Provide runtime context: |:|

Provide variations: O

Create services: RESTful service [) RMI [] Kafka service
Service name: petStore

Service class:

RMI Service class:

\ersion: 3.0 X
URL: pet-store

Template class:

Service groups:

Configuration (XML): ﬁ

Delete Configuration

Defining rules deploy configuration settings
Defining Rule Service Version

Openl Studio supports versioning definition for rule services. This functionality allows specifying a version for
the project revision to be deployed. The required version of the deployed project can be called from
deployment repository. All specified versions of the project appear on the OpenL Tablets Rule Services page
with a version number defined in brackets.

To check the services version deployment, in OpenL Tablets Rule Services, find the name of the deployed
project. Services version is set both in the services header and in the services URL.

@ OpenL Tablets Rule Services Show all deployments:
Service Name Services & Links Start Time
1 + Example 3 - Auto Policy Calculation MANIFEST.MF 2/27/2024, 8:12:335 AM
z +f Tutorial 2 - Introduction to Data Tables MANIFEST.MF 2/27/2024, 8:20:14 AM

Services header and URL with the version number
To define the rule service version, proceed as follows:

1. In the Projects tree, select a project.

105/ 150

2. In the top line menu, click Rules Deploy Configuration.
3. In the window that appears, click the Version field.
By default, the Major 0, Minor 0 scroll list appears.

4. For more information on how to configure deployment configuration settings, see Configuring
Additional Rules Deploy Configuration Settings.

5. In the scroll list, select the services version.

For example, to create the services version 1.0, Major = 1 and Minor = 0 must be selected.

Create Deploy Configuration

Open Revision Close Save Copy Delete Compare Add Folder Upload File — Export

Properties Revisions Elements Rules Deploy Configuration

Provide runtime context: O

Provide variations: O

Create services: RESTful service [J RMI [] Kafka service
Service name: petStore

Service class:

RMI Service class:

Version: 1.0
or 4 s
URL: Major -
Minor 0

Template class:
Service groups:

Configuration (XML): Y/

Delete Configuration

Defining services versioning
6. Click Save Configuration.

The selected services version is displayed in Rules Deploy Configuration for the selected project. For the
example displayed in this section, the project version is 1.0.

Comparing Project Revisions

OpenlL Studio provides a function for comparing files and sheets in Excel files between two project revisions.
To compare contents of the currently opened project revision with any other revision, proceed as follows:

1. In the project tree, select the project.

106 / 150

2. In the right pane, click Compare.

A window appears listing contents of the currently opened project version on
the left side and contents of another project revision on the right side.

@ OpenL Studio

show equal elements: [] Show equal rows: Compare

Revision: User workspace Branch: master

- | pStep1
= | gRules Double DriverPremium (String driverAge, String driverMaritalStatus)
gname: -> Rules Double DriverPremium1 (String driverAge, String driverMaritalStatus)
| @ Rules String Greeting (Integer hour)
- |Step2
| g SimpleLookup Double CarPrice (String country, String carBrand, String carModel)
= |%Person Info

|% Datatype Person

Select Excel file: | Tutoriall - Intro to Decision Tables.: v Revision: DEFAULT: 12/02/2021 09:21:48 AV v

Select Excel file: Tutoriall - Intro to Decision Tables. v

SimpleLookup Double CarPrice (String country, String carBrand, String carModel) SimpleLookup Double CarPrice (String country, String carBrand, String carModel)
] B porche o mw o Pooe
Country 74 sDRIVE35i Z4sDRIVE28i 911 Carrera4S 911 Carrera 4 -__—_
USA $55,160 $47.350 ; $105,630 $91,030 UsA $55,150 $47,350 $105,630 $91.030
Great Britain $57.150 $49,360 $107,630 $93,220 Great Britain $57.150 $49,350 $107,630 $93,220
Lithuania $64.400 $57,150 $125,600 $110,030 Lithuania $64,400 $57,150 $125,600 $110,030
Belarus $90,400 $83,500 ; $145,500 $130,500 Belarus $90,400 $83,500 $145,500 $130,500
< > £

Comparing the current project revision from user workspace to the second project revision

3. To view or hide equal rows in the table, select or clear the Show equal rows check box.

4. To compare the current project revision with a different revision, select the branch and revision.

Exporting a Project or a File

To export a project from repository editor, proceed as follows:

1. In the project tree, select the project.
2. In the right pane, click Export.

3. In the displayed window, select the required project revision, click Export and a full project in the

selected revision will be exported.

The default project version for export is the one that a user has currently open in Rules Editor. If it contains

unsaved changes, it is marked as In Editing, otherwise, it is called Viewing.
To export any revision of a file from Repository, proceed as follows:

1. In the project tree, select the project.
2. Expand the project tree and select the file to be exported.
3. In the right pane, click Export file.

107 / 150

4. In the displayed window, select the required file revision and click Export.

Export file

File Mame Main.xlsx

File Rewvision * 3 r |
F".

| AI

Cancel

Exporting a file from a project
Note: If the project is in the Local status, these options are not available.
Unlocking a Project

Openl Studio provides a function for a user to unlock a project which is edited and, therefore, locked by
another user. Be aware that after unlocking, all unsaved changes made by another user will be lost and the
project will be closed. The name of the user who locked the project appears in project summary, next to the
project status.

To unlock a project, proceed as follows:

1. Perform one of the following steps as required:
© In the Projects tree, select the project and, in the right pane, click Unlock.
© Click Projects in Navigator to get a list of projects, navigate to the project that needs to be

removed and click the corresponding Unlock item = onthe right.
2. In the confirmation window, click OK.

It is recommended to grant permission to the "Unlock” functionality only for administrators.

Browsing the Deployment Repository

The Deployment repository contains project deployments and is also the location from where solution
applications use them. OpenL Studio allows connecting several deployment repositories. For information on
how to configure deployment repositories, refer to Managing Repository Settings.

To browse a deployment repository, proceed as follows:

1. Switch from the Design repository view to the Deployment repositories view by clicking
Deployment in the top of the left pane.

2. In the project tree, select the deployment repository to be browsed (repositories are marked by g
icon).

108 /150

The list of project deployments or deployed configurations — deploy configurations which consist of
rule projects and specific project revisions and deployed to the selected deployment repository — are
displayed in the middle pane.

3. If needed, expand the repository tree and browse project deployments.
Openl Studio displays only the latest revisions of each deployed configuration in the deployment repository.

Also, when browsing deployed configurations in the deployment repository, users can see their content,
namely what rules projects are deployed.

@ OpenL Studio

Design Deployment I‘:.i Create Deploy Configuration

] Projects in Examples#2
+ | | Production

= [J var Name Revision Modified By Modified At
+ [Auto Rating Example#4 Example 2 - Corporate Rating 3 DEFAULT 114142013

+ [Example 2 - Corporate Ratin g3
L Examp P g Example 3 - Auto Policy Calculation 1 DEFAULT 114142013

-] Examples#2
+ [CJExample 2 - Corporate Rating
- L] Example 3 - Auto Policy Cal...
|=| AutoPolicyCalculation. xls
|=| AutoPolicyTests xls

|=| UServ Auto Insurance ...

Deployment repository with deployed projects
Committing with Missing User Data

Upon user logon, the user’s display name and email are used for Git commits if the repository type for the
action is Git. This applies to the following actions:

* create a project or deploy configuration

® save a project or deploy configuration

* delete a project or deploy configuration

* undelete a project or deploy configuration
* erase a project or deploy configuration

* deploy a project or deploy configuration

* synchronize a project or configuration

If the display name and email data is missing, the Configure commit info popup window appears on commit
attempt. Once all the required information is entered and saved, the action that triggered the commit is
completed automatically.

Working with Project Branches

109 /150

This section introduces project branches and describes how to use them. Branches are useful when several
users work on the same project simultaneously and then merge the changes or keep them as separate project
versions.

The following topics are included in this section:

* Creating a Branch

® Working with Branches

® Resolving Conflicts

® Using Protected Branches

Creating a Branch

A branch is created by copying an existing project. Both predefined and user-defined names can be used for a
branch. For more information on name patterns, see Setting Up a Connection to a Remote Git Repository
Account.

Proceed as follows:

1. In Openl Studio, in the editor or repository, select a project.
2. Click Copy.
3. In the New Branch Name field, proceed with the default value or enter a new branch name.

The newly created project branch is displayed as an active branch and ready for work.

Note: When a project in the Closed status is copied, the project in the newly created branch has the No
changes status.

Working with Branches

This section describes how to view existing branches, switch between them in the editor and repository,
enable and disable branches, and delete branches. Proceed as follows:

1. To display a current project branch, in OpenL Studio, in the editor or repository, open a project.
The current project branch is displayed.

2. To switch between branches in the editor, click the last link in the address bar identifying the branch
name and in the list that appears, select the required branch.

@ Openl. Studio EDITOR

Projects / Tutorial 1 - Introduction to... / WebStudio/Tutoriall-Intro... O Copy Update Export More v

aduction to C e Branch: WebStudio/Tutoriall-IntroductiontoDecisionTables/DEFAULT/20200324

Tutorial 1 - I

Decision Tables

R ———————— WebStudio/Tutoriall-IntroductiontoDecisionTables/DEFAULT/20200324

Sources
master
wrancn. VE LDy o 4 sase e oo eaan aoesy wo AULT/20200324
Revision: 92417be3f9e3992c5f35a490a1dd8270e2484e05
Status:
Created At: 12/04/2019
Created By: DEFAULT
Modified At: 12/04/2019
Madified By: DEFAULT

110/ 150

Switching between branches in the editor

3. To switch between branches in the repository, for a project, in the Branch field, select the required
branch.

4. To disable or enable a branch for a project, in the repository, click the dots next to the branch name
field and in the window that appears, clear or select the appropriate branch check box.

This list also contains branches created outside of OpenL Studio.

Manage branches

Branches where the project Tutorial 1 - Introduction to Decision Tables is used:

master

WebStudio/Tutoriall-IntroductiontoDecisionTables/DEFAULT/20200324

Cancel

Enabling and disabling branches for a project
5. To delete a non-default branch, switch to this branch in the project properties and click Delete Branch.

The non-default branch is deleted completely, it cannot be later restored, and it does not appear in the
Manage branches list. The project in the branch is erased. If the non-default branch contains commits
not merged to the default branch, a warning message is displayed upon deletion attempt.

Confirm Delete Branch

Are you sure you wani fo delete branch "WebStudic/Example1-BankRating/DEFAULT/ 202104127

A WARNING! Project 'Example 1 - Bank Raling' is modified, if you delete branch, all changes will be lost

| understand the consequences, delete this branch &N

Deleting a non-default branch with unmerged commits

6. To delete a default branch, in the repository, select the required project branch and click Delete.
The project is archived and disappears from the list of active projects.

7. To completely delete the default branch or restore the archived project, proceed as follows:

8. Click the filter icon and clear the Hide deleted projects check box.

9. In the branch drop-down list, select an archived branch.

111 /150

10. To restore an archived project, select it in the list of projects and click Undelete.
11. To completely remove the project and the branch, click Erase.

12. To merge two branches, click Sync and select one of the following options:

Option Description

Receive their . .
dat Changes from a selected branch are copied to the currently active branch.
updates

Changes from the currently active branch are uploaded to the selected
Send your updates b H
ranch.

If upon saving there is a conflict due to updates in the same module sheet, the Resolve conflicts
window appears.

Resolve conflicts

Your version: user2: 08/06/2020 01:05:51 PM

Their version: userl: 08/06/2020 01:05:21 PM

Base version: DEFAULT: 08/06/2020 01:01:04 PM

Comment: Eerg;_&&mith commit 77275add0073442299025f23695de6fce 7h2240f
onflicts:

Example 2 - Corporate Rating/Corporate Rating.xdsx

Conflicts in project 'Example 2 - Corporate Rating':

File Compare Resolve

Compare

'D Use vours

Corporate Rating.xlsx O Use theirs

O Upload merged file

Cancel

Resolving conflicts on merging branches

Conflicts can be resolved by selecting one of the following options:

Option Description
U Changes in the currently active branch are applied on merge. The changes applied by
se yours
Y another user are lost.
. Changes in the selected branch are applied on merge. The changes made by you are
Use theirs

lost.

112 /150

Option Description
Upload Depending on the selected merging options, changes in the manually updated and
merged file uploaded file override changes in the branch.

13. To view the changes made by another user, compare them to your changes, or view the base version of
the file, select a corresponding option in the Compare column.

Resolving Conflicts

If the same version of the project is edited by several users, upon submitting their changes using different
clients, the conflict error message appears asking which version must be saved. Changes in other versions are

discarded.

Resolve conflicts

Your version:
Their version:
Base version:

Comment:

File

Compare

Main.xlsx

admin: 07/02/2020 01:11:01 PM

user: 07/02/2020 01:08:11 PM

admin: 07/02/2020 01:07:11 PM

Merge with commit 81504302c4afefe018fab5692e676fe628d2f256

Conflicts:
Sample Project/Main.xlsx

Conflicts in project 'Sample Project’:

Resolve

) Use yours
) Use theirs

) Upload merged file

ave Cancel

w

An error message upon saving conflicting versions

The error message contains the Compare link that allows viewing both conflicting versions for comparison.

Show equal elements: [Show equal rows:

= | gy Vehicle-Premium

|z SimpleRules Double BasePremium (CarType carType)

Their fragment

SimpleRules Double BasePremium (CarType carType)

Compact $300
Sedan $40l3
Luxury $500

30

Your fragment

SimpleRules Double BasePremium (CarType carType)

Compact 5270
sedan $400
Luxury $500

$0

113/150

Comparing conflicting versions
Using Protected Branches

Openl Tablets allows defining a list of protected branches for Git design repository to avoid pushing

erroneous changes into main or release branches.

If a branch is marked as protected, all actions that can impact Git history, such as deleting a project or module
or synchronizing to a protected branch, are forbidden. In this case, separate branches are modified and then
merged into the protected branch only via the Git Cl process.

Branches can be defined as protected using the following property:
repository.design.protected-branches

Branches must be separated by comma.

Wildcards can be used to specify a group of branches, such as release-*, so all branches that start with
release- keyword are protected.

By default, branches are not protected.

Branches can also be defined as protected in OpenlL Studio administrative tab as described in Setting Up a
Connection to a Git Repository.

Using Administration Tools

This section explains how to view and control OpenL Studio system settings and manage user information in
the system.

To perform administration tasks, in the top line menu, click ADMIN.

By default, the Common tab is displayed. The system settings are organized into the Common, Repository,
System, Users, Groups & Privileges, and Notification groups. To open the group, click the corresponding
tab on the left.

114 /150

@ OpenL Studio
. User Workspace
bk
Common Weorkspace Directory: Jopenl-demo/user-workspace
: l History
Repository
The maximum count of
g saved changes for each 100
project per user:
System
Clear all history
&
(V-
Lot Other
!‘.: Update table properties
[/ ('createdOn’, 'modifiedBy’]
Groups & etc.) on editing:
Privileges
Date Format: MM ddyeyy
e Time Format: hh:mm:ss a
Motification
App

Openl Studio administration

Normally, the default settings are recommended, but users with appropriate permissions can change them as
required. After making changes, click Apply All and Restart and refresh the page. To restore the original
settings, in the System tab, click the Restore Defaults and Restart button.

The following topics are included:

* Managing Common Settings

* Managing Repository Settings

® Managing System Settings

* Managing User Information

* Managing Notifications

* Managing Tags

* Managing Email Server Configuration

Managing Common Settings
The Common tab defines the following general OpenL Studio settings:

* Managing User Workspace Settings
* Managing History Settings
® Managing Other OpenL Studio Settings

115/150

Managing User Workspace Settings

The User Workspace section is used to define the workspaces directory where user projects are located.

Managing History Settings

To manage history settings, proceed as follows:

1. In The maximum count of saved changes for each project per user field, enter the required number.

By default, this field value is set to 100. If no value is provided, the number of records in history is

unlimited.

2. To clean all history files for the project, click the Clear all history button and confirm deletion.

Managing Other OpenL Studio Settings

The following table describes other general OpenL Studio settings:

Option Description
Indicates whether table properties controlled by the system must be updated and can be
viewed in OpenL Studio Ul.
Update table) L) . . . I
. If this option is cleared, information about the time of table creation and modification
properties

and changes authors, such as Created By/On, Modified By/On,
is not added to the table properties.

Date Format

Enables changing the date format in the OpenlL Studio Ul.

Time Format

Enables changing the time format in the OpenL Studio Ul.

Managing Repository Settings

This section describes repository settings management and includes the following topics:

* Managing General Repository Settings

* Managing Git Repository Settings

Managing General Repository Settings

The Repository section contains connection settings of design and deployment repositories. To modify the

repository settings, proceed as follows:

1. In the Name field, enter the repository name to be displayed in repository editor.

2. Select the connection type and enter corresponding location of the repository to be used as a data

source as described in the following table.

Type

Description

Git

The repository can be configured on the local or remote machine.

116 /150

Type

Description

Database

The repository is located in a local or remote database. Repository URL field displays
URL for access to the database.

A user can create connection to different databases, such as MySQL, MS SQL, Oracle
etc.

For more information on supported versions, see https://openl-tablets.org/supported-
platforms.

AWS S3

The repository is located in Amazon Simple Storage Service (AWS S3).

A "bucket” is a logical unit of storage in AWS S3 and it is globally unique.

Choose a region for storage to reduce latency, costs, and so on. An Access key and a
Secret key are needed to access storage.

If empty, the system retrieves it from one of the known locations as described in AWS
Documentation. Best Practices for Managing AWS Access Keys.

The Listener period is the interval in which to check repository changes, in seconds.

For more information on repository settings, see OpenL Tablets Rule Services Usage and Customization

Guide > Configuring a Data Source.

3. Provide the URL value.

The following table provides examples of deployment repository URL values for different databases.

Database URL value sample

MysaQl, jdbc:mysql://localhost:3306/prodRepository, jdbc:mariadb://localhost:3306/

MariaDB prodRepository (for MariaDB driver)

PostgreSQL jdbc:postgresql://localhost:5432/ prodRepository

MS sQL jdbc:sqlserver://localhost:1433;databaseName=prodRepository;integratedSecurity=false
Oracle jdbc:oracle:thin:@localhost:1521:prodRepository

4. To set up a secure connection for connecting to remote or database-located repositories, select the

Secure connection check box and fill in the login and password fields.

For more information on repository security, see OpenlL Tablets Installation Guide > Configuring Private

Key for Repository Security.

117 /150

https://openl-tablets.org/supported-platforms
http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/#configuring-a-data-source
https://openldocs.readthedocs.io/en/latest/documentation/guides/installation_guide/#configuring-private-key-for-repository-security

Mame: Deployment

Type: Database (JDBC) |z|

URL: * jdbc:h2:./openl-demo/repositories/deployment/db; AUTO_SEF
Secure connection:

Login: test

Password: ssse

Configuring deployment repository settings
Connection to a local deployment repository is configured by default.

5. To store deploy configurations in the Design repository, in the Repository > Deploy configuration
tab, select the Use Design Repository check box and provide required parameter values.

6. To add design or deployment repositories, click Add Repository and enter required information.

Design repositories Use Design Repository: &
| Design Name: Deploy Configuration
Type: ‘ Database (JDBC) EI
' Design
URL: * jdbc:mysqgl://localhost: 3306/ repository
Add Repository
Secure connection:
) : Login: test
{) Deploy configuration Password: SiEE

iDe;:llo'_-,fment

Add Repository

Using another repository for deployment configurations
7. When finished, click Apply All and Restart to save the changes and refresh the page.
To enable storing large files in a Git repository, Git Large File Support (LFS) can be used.

* To enable the Git repository use LFS before it is cloned by OpenL Studio, perform the necessary
configuration as described in https://qgit-Ifs.github.com/.
¢ |f the Git repository is already cloned by OpenL Studio, to enable using Git LFS, proceed as follows:

118 /150

https://git-lfs.github.com/

1. Close all projects in the workspace.

2. Delete all deployment configuration settings.

3. Stop OpenL Studio.

4. Drop the local folder with the Git repository to the OpenL Studio home directory.

5. Start OpenlL Studio. OpenlL Studio will re-clone the directory.

6. Recreate the required deployment configuration settings that were deleted previously.

Managing Git Repository Settings

Git is a free and open source distributed version control system designed to handle everything from small to
very large projects with speed and efficiency. For more information on Git, see https://git-scm.com/.

A Git repository is the folder inside a project. This repository tracks all changes made to files in the
project, building a history over time.

This section describes how to set up a connection to a Git repository, configure Git functionality, and resolve
conflicts when modifying the same version of the project, and includes the following topics:

¢ Setting Up a Connection to a Git Repository
® Setting Up a Connection to a Remote Git Repository Account

Setting Up a Connection to a Git Repository

In the ADMIN tab, in the Repository section, define values for the following connection properties:

Parameter Description
Name Repository name. This value cannot be modified.
Type Type of the repository. The value must be set to Git.
Remot Identifier of whether a Git repository is stored remotely.

emote

" For more information on remote repository settings, see Setting Up a Connection to a

repositor

P y Remote Git Repository Account.
Local path Folder where a Git repository local copy is stored.
Protected Branches that can be set as protected from any modifications.
branches For more information on protected branches, see Using Protected Branches.
Default : . .
b h Pattern for a default branch name. The default value is WebStudio/{project-

ranc

name}/{username}/{current-date}.

name
Branch
name Additional regular expression to be used for validation of the new branch name.
pattern

119/150

https://git-scm.com/

Parameter

Description

Invalid
branch
name
message
hint

Error message displayed when trying to create a branch with a name that does not match
the additional regular expression.

Customize

comments

Custom comment message template for Git commits.

Comments can be customized using the following placeholders:

- {user-message} represents a user defined commit message. It is also used as a commit
message in OpenlL Studio.

- {commit-type} is used by commits to recognize the commit type of the message.

- {project-name} is replaced by the current project in the message and used for user
message templates for Create project, Save project,

Archive project, Restore project, Erase project, and Copy project.

- {revision} represents a project revision used for commit.

By default, all commits are submitted to Git with a message in the following format:

The following placeholders can be used for the Restore from old version user message
templates:

- {revision} is replaced by the old revision number.

- {author} is replaced by the author of the old project version.

- {datetime} is replaced by the date of the old project version.

An additional validation rule can be set up for user message templates in the User
message pattern field, in the form of a regular expression.

If the validation according to the pattern fails, an error text set in the Invalid user
message hint field is displayed to a user.

Flat folder
structure

Flag that denotes repository structure.

For a flat structure, all projects are stored in the directory specified in the Path in
repository property, each project in its own folder.

Otherwise, if the parameter is set to false, the repository is considered as a Git repository
with non-flat structure, and projects can reside

in folders and subfolders defined by a user upon project creation or copying, with each
project having its own level of nesting.

Project index is stored in <openl-home>/repositories/settings/<repo-id>/openl-
projects.yaml and is updated automatically.

Branches information is stored in <openl-home>/repositories/settings/<repo-
id>/branches.yaml.

Folder name limitations are the same as those applied to folder names by the used OS.

Path

Directory where all flat repository structure projects are stored.

If the password is changed on the server side, by default, OpenL Studio makes three attempts to log into the

remote Git server, and then the Problem communicating with “Design” Git server, will retry

automatically in 5 minutes. error is displayed. After that, OpenL Studio stops login attempts to prevent a

120/ 150

user account from blocking, and the Problem communicating with 'Design’ Git server, please contact
admin. error is displayed. Define the following properties in the properties file to configure this behavior:

Property Description

i+ failed Time to wait after a failed authentication attempt before the next attempt.
repo-git.failed-
po-g o It is used to prevent a user account from blocking. The default value is 300
authentication-seconds q

seconds.

Maximum number of authentication attempts.
After that, a user can be authorized only after resetting the settings or
repo-git.max- restarting OpenL Studio.
authentication-attempts No value means unlimited number of attempts.
If the value is set to 1, after the first unsuccessful authentication attempt, all
subsequent attempts are blocked.

Setting Up a Connection to a Remote Git Repository Account

To set up a connection to a remote Git repository account, in the ADMIN tab, in the Repository section,
select the Remote repository check box and define values for the following properties:

Parameter Description

URL for the remotely located Git repository or file path to the repository stored

URL
locally.
Login Username for accessing a remote Git repository.
Password Password for accessing a remote Git repository.
Branch Project branch that is used by default.
Changes check)))
it | Repository changes check interval in seconds. The value must be greater than 0.
interva
Connection timeout Repository connection timeout in seconds. The value must be greater than 0.

Managing System Settings
The System tab enables modifying core, project, and testing options and includes the following topics:

Section Property Description

Setting turns on/off the mechanism of dispatching for a rule table where the
only one version of this rule table exists.
Core Dispatching By default, the dispatching.validation value is set to true in OpenL Studio.
Validation For more information on dispatching validation, see
Openl Tablets Rule Services Usage and Customization Guide>Table Dispatching

Validation Mode.

121 /150

https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/#table-dispatching-validation-mode

Section Property Description

Allows turning on/off checking of rules consistency and validity on each edit in
Rules Editor.
By default, the check box is selected. Automatic checks are executed after each
Verify on edit.
Edit If this option is cleared, the verification process does not launch automatically
when the Save button is clicked.
Instead, a Verify button appears in Rules Editor, and the user must verify
manually by clicking this button.

Indicates the number of test cases executed simultaneously.By default, four

Thread threads are set.
Testing number It means that after running a test table or all tests, up to four test cases will be
for tests in progress at the same time.

When they are calculated, the next four test cases will be executed.

Restore
Defaults
and Restart

Restores all settings to default values. All user defined values, such as repository
settings, will be lost.

Managing User Information

This section describes how to control user access in the OpenlL Studio application based on users and user
groups. All privileges in the system are assigned at a group level and will be granted to a particular user after
he or she is included in a particular group.

Users and groups are managed in the Users and Groups & Privileges tabs. Only members of the
Administrators group have rights to manage users and groups in OpenL Studio.

The following topics are included in this section:

* Managing Groups
* Managing Users

Managing Groups

This section explains how to create, modify, and delete a user group with a certain set of privileges. The
Administrators group cannot be deleted from the system.

The following topics are included in this section:

* Viewing a List of Groups

* Adding a Group

* Editing a Group

* Deleting a Group

* Managing a Group in Case of Third Party Identity Provider

Viewing a List of Groups

122 /150

To view a list of groups, proceed as follows:
1. In the ADMIN tab, click Groups & Privileges.

The system displays a list of groups similar to the following one:

Name Description Privileges
Administrators 7
Analysts [Viewers | Developers | Testers | ’%
Deployers | viewers | Delete Deploy Configuration | Erase Deploy Configuration | Create Deploy Configuration | Deploy Projects | Edit Deploy Configuration
Developers Create Projects | Create Tables | Erase Projects | Remove Tables | Edit Projects Delete Projects
Testers Run Tables 7 R
Viewers

Add New Group

7 R
7 R

7 R

User groups in the Groups & Privileges tab
2. To create a new group, proceed as described in Adding a Group.
3. To edit a group, proceed as described in Editing a Group.

4. To delete an existing group, proceed as described in Deleting a Group.

Adding a Group

To add a new group, proceed as follows:
1. Click the Add New Group link.
The Add New Group form appears.
2. Enter the group name in the Name field.
3. Optionally, provide group description in the Description text box.
4. In the Privilege area, define the privileges as needed.

To assign a set of privileges for a group, click the group name above the list of privileges, such as
Developers, Testers, or Administrators. The Authenticated default group with the Viewer privilege is
created if the All authenticated users have View access check box is selected in the installation
wizard. The group is displayed in the user table if no other groups are assigned to this user.

123 /150

Add New Group

Mame: * Super User

Description: | For VIP users
Privilege: Administrators Analysts Deployers Developers Testers Viewers

[view Projects o o v v

D Create Projecis

[Edit Projects

D Erase Projects

LS S 5

D Delete Projects

D Unlock Projects

D Deploy Projects

D Create Deploy Configuration
D Edit Deploy Configuration
D Delete Deploy Configuration
D Erase Deploy Configuration
D Unlock Deploy Configuration
[create Tables

[Edit Tables

[Remave Tables o -

Cancel

Adding a user group with required set of privileges

5. Click Save.
Editing a Group

To modify a user group, proceed as follows:

1. In the list of groups, locate the group that needs to be changed and click the Edit icon Z|

2. In the Edit Group form, change the group name, add or modify its description, and change privileges
as needed.
3. Click Save to complete.

Deleting a Group

To delete a user group, proceed as follows:

1. Locate the group to be deleted and click the red cross on the right: x|

124 /150

2. Click OK in the confirmation dialog.
Managing a Group in Case of Third Party Identity Provider

If OpenL Studio is installed with the option to sign in via a third party identity provider, such as SSO or Active
Directory, groups created and edited in OpenL Studio must have the same names as available in Active
Directory or SSO groups.

When a user from the third-party server logs into OpenL Studio, external user groups are pulled from the
external server and displayed in the OpenL Studio user table.

¢ If an external group cannot be matched with the OpenL Studio group, that is, no group with such name
exists in OpenL Studio, the group is displayed as a collapsed number, for example, +1, and when the
value is expanded, the group is highlighted grey.

Username First Name Last Name Email Display Name Groups
openl_1® openl_1First openl_1last dhulevich@eisgroup.com openl_1 openl_1 +2
openl_2 dhulevich@eisgroup.com openl_2 openl_2 Minsk ExigenServices

Groups non-existing in OpenL Studio displayed as collapsed numbers
Groups highlighted blue are internal OpenL Studio groups.

* If an external group is matched with the OpenL Studio group but it does not have the Administrator
privilege assigned, the group is highlighted green.

Username First Name Last Name Email Display Name Groups
openl_1® openl_1First openl_1lLast dhulevich@eisgroup.com openl_1 openl_1 m m +1
openl_2 dhulevich@eisgroup.com open|_2 openl_2 Minsk ExigenServices

Groups without the administrative privilege matched with the Openl Studio groups

* If a group has the Administrator privilege, the group is highlighted red in the user table.

Username First Name Last Name Email Display Name Groups
openl_1® openl_1First openl_ilast dhulevich@eisgroup.com openl_1 openl_1 33
openl_2 dhulevich@eisgroup.com openl_2 openl_2

Groups without the administrative privilege matched with the Openl Studio groups
After each user login, OpenL Studio updates external groups as follows:

* If a user got a new group, it is added to the table.
* If a group is revoked from this user, it is deleted from the table.

External groups are checked and disabled for editing in the Edit user popup window. Administrators can add
an additional group to a user, except for SSO CAS/SAML external user management.

Administrators cannot revoke the external group.

Managing Users

125/150

Users get access to OpenL Studio functions by including them in particular groups.

By default, there are the following users in OpenL Studio predefined in Demo mode:

User name User password Groups

user user Viewers

u0 uo Testers

ul ut Developers, Analysts
u2 u2 Viewers

u3 u3 Viewers

u4 u4 Deployers

al al Administrators
admin admin Administrators

On the first start of OpenlL Studio in the multi user mode, users with administrator permissions are defined in
the installation wizard, Configure initial users section, Administrators field. Administrators password is set
equal to their username and can be changed later as necessary. Administrators can then create new users or
update existing users in OpenL Studio as needed. For information about the permissions of the groups, refer
to Managing Groups.

The following topics are included in this section:

* Viewing a List of Users

® Creating a User

* Editing a User

® Deleting a User

* Managing Users in Case of Third Party Identity Provider

Viewing a List of Users

To view a list of users, proceed as follows:
1. In the ADMIN tab, click Users on the left.
The system displays a list of OpenL Studio users.
2. In the Users tab, perform either of the following:

* To create a user, proceed as described in Creating a User.
* To edit a user, proceed as described in Editing a User.
* To delete a user from the system, proceed as described in Deleting a User.

Creating a User

While creating a user, make sure to include the user in at least one group. Proceed as follows:

126 / 150

1. Click the Add New User link.

The system displays the Add New User form.

Add New User
Account
Local user:
Username: * Superllser
Email: t.sawyer@example.com
Password: * L]
Mame
First name {Given Name]: Tom
Last name (Family Name): Sawyer
Display name; First Last b
Tom Sawyer
Group
Administrators [] analysts [] Deployers
[] pevelopers [] Testers [Jwviewers

Cancel

Creating a user
2. To create a user locally, ensure that the Local user check box is selected.

This option is selected by default. For local users, password information is stored in OpenlL Tablets Web
Studio and third party system user data is not used. This check box is available only if the Active
Directory user mode and internal user management option are selected.

3. Specify the user’s login name in the Username field.
4. Optionally, enter the user email.

The email value is mandatory for committing to the Git repository.
5. In the Password field, enter user password value.

This field is unavailable for external users.

127 /150

6. Optionally, enter the user’s first and last name.
By default, the Display name value is automatically generated as “First name” +space+"Last name”.
The display name is mandatory for committing to the Git repository.

7. To change the Display name pattern, in the appropriate field, select either First Last, or Last First.
If the Other option is selected, the field becomes editable and any display name can be entered.

8. Select one or more groups to assign the user to.

9. Click Save to complete.

The system displays the new user in the Users list. If the username and password values are the same, an
exclamation mark is displayed next to the username. A user can change the password to improve security.

Username First Name Last Name Email Display Name Groups
SuperUser Tom Sawvyer t.sawyer@example.com Tom Sawyer Administrators b4
userl M\
A list of users
Editing a User
To edit a user, proceed as follows:
1. In the Users list, locate a user that needs to be modified and click the username.
2. In the Edit User form, modify user data as required.
The username and administrator’s privilege set up in the property cannot

be changed. For external users synchronized with Active Directory or SSO, only fields that are not
received from the third party are editable.

3. Click Save to save the changes.
Deleting a User

The Administrators group in OpenL Studio must contain at least one administrator user. That it, the only
Openl Studio administrator cannot be deleted.

Initial users created during OpenL Studio installation and the currently logged in user cannot be deleted as
well.

To delete a user, proceed as follows:

1. In the Users list, locate the user for deletion and click the Delete icon: A .
2. Click OK in the confirmation dialog.

128 /150

Managing Users in Case of Third Party Identity Provider

There are some differences in managing users when OpenlL Studio is installed with an option to sign in with a
third party identity provider, such as SSO or Active Directory.

An external user is created in OpenL Studio upon first user logon using the credentials stored in the third
party identity provider, and it is not required to create a user in OpenlL Studio in advance. All corresponding
user information, such as first name, last name, display name, and email address, is retrieved from the third
party and saved to the OpenL Studio, locked for editing. If some part of this information is not received from
the third party, the corresponding fields are available for editing in OpenL Studio. An exception is external
user management for SSO, where user data cannot be edited in Admin > Users and only part of data can be
edited in the user details section.

If a user is first created in OpenL Studio as internal or external, and for logon, OpenL Studio username and
third party password are used, a user becomes external, and only third party password stays valid. After such
logon, synchronization with the third party is performed, information stored in OpenlL Studio is overwritten by
third party data information, and the corresponding fields are locked for editing. Exceptions are as follows:

¢ If the third party email address, first name, or last name value is empty or unavailable, the current email
address, first name, or last name is not emptied.
¢ If the display name value is empty or unavailable, the local display name is not modified.

An exception is the situation when the first or last name was changed.

¢ If the display name was set to “first name + space + last name”, it is updated to the new “first name +
space + last name”.

¢ |f the display name was set to the “last name + space + first name”, it is updated to the new “last name
+ space + first name”.

¢ If the display name is set to Other and its value in OpenL Studio is not empty, and in the third party
service, it is empty, upon synchronization, the display name set locally is not changed.

¢ |If the display name value is empty in OpenlL Studio and the third party service, but the first name and
last name values are not empty, the display name is set to “first name + space + last name”, regardless
of the pattern specified upon local user creation.

If this user was not created as a local user previously but instead, created upon the external user logon, the
display name value stays empty.

User permissions can be assigned locally in OpenL Studio. Alternatively, to retrieve permissions from a third
party identity provider, in OpenlL Studio, create a user group with the same name as in third party and grant
the required permissions to it. It is not required that the group is manually assigned to the user in OpenL
Studio. Also, additional user groups can be assigned to a user in OpenL Studio unless the SSO external user
management was set up.

Note: When creating a user, the username in OpenL Studio must match the username in the third party
identity provider.

Managing Notifications

In the ADMIN > Notification section, users with the administrator privileges can send text messages to all
OpenlL Studio instances and users that are currently online or remove previously sent notifications.

129 /150

When a notification is sent by clicking Post, a red bar with notification text appears for all users and OpenL
Studio instances. To remove the message for all users and OpenlL Studio instances, click Remove.

@ OpenL Studio
Motify all active users
Common bect

3

Repository

Message:

g Post Remove

System

@
'S
Users
o9.
(Y
Groups &
Privileges

=/

Motification

#

Tags

Red bar identifying a notification sent to all active users and instances

Managing Tags

In OpenL Tablets, tags can be assigned to a project. A tag type is a category holding tag values of the same
group. An example is the Product tag that includes tags Auto, Life, and Home.

If a tag type is defined as optional, its value definition can be skipped when creating a project. Otherwise, tag
definition is mandatory.

For extensible tag types, any user can create new tag values. For other tag types, values are configured by an
administrator only.

To create project tags, proceed as follows:

1. In the ADMIN tab, click Tags on the left.

130/ 150

Common
Repository
]

System

i

Users

o8-
aee
Groups &
Privileges

@

Mofification

#

Tags

@ OpenlL Studio

Tag Types and Values
Tag type is a category that includes tag values of the same group. For example, the Product tag type can include tags Auto, Life, and Home.
Proceed as follows:

» To add a tag type, in the New Tag Type field, enter the tag type name and press Enter or Tab. The tag type is added, and fields for tag values appear.
» To add a tag value, in the New Tag field, enter the tag name and press Enter.

All created tag types and values are saved automatically.

New Tag Type

Tags from a Project Name

Tags can be extracted from a project name using a project name template.

Each template must be defined on its own line. The order of the templates is important: the first template has the highest priority, the last template has the lowest priority.
Tag types are wrapped with the percentage %' symbol.

'?" stands for any symbol.

'*' stands for any text of any length.

Example:

For the % Domain®a-%L0B%-* template, for the Policy-L&A-rules project, the tags are Policy for the Domain tag type and L&A for LOB.

Project name templates:

Save templates Fill tags for projects

Selecting tags

2. To add a tag type, in the New Tag Type field, enter the tag type name and press Enter or Tab.

When at least one tag type is added, a field for adding tag values appears.

: = ,) x
System Domain |l optional L] Extensible
|Claims # | |Policy 3| | New Tag
Notification

EI ! LOB [optional] Extensible X

Tags [ﬁ;utu 3] |Hcme :] New Tag

All created tag types and values are saved automatically.

New Tag Type

Adding tag values

3. To edit a tag type, click the tag type name field and make the necessary changes.

4. To delete a tag type, click the red cross icon for the appropriate tag.

5. To add a tag value, in the New Tag field, enter the tag name and press Enter.

131 /150

6. To edit a tag, click the menu icon = , select Edit, modify the tag, and press Enter or click outside the
field.

7. To delete a tag, click the menu icon = and select Delete.

All created tag types and values are saved automatically. These values are now available for selection
when assigning tags to projects as described in Creating Projects in Design Repository.

Tag values can be derived from project names. Proceed as follows:

8. To define project name templates to be used for deriving tags, in the Tags from a Project Name
section, enter the template value.

9. To save project name templates, click Save Templates or simply click outside the field.

10. To assign tags according to these project name templates to the projects that do not have tags defined
yet, click Fill tags for projects.

The Projects without tags window appears. It contains all projects that have None selected for one or
multiple tag types, or do not have tags defined at all, and which name matches the project name template.

Projects without tags

Apply tags Repository Path Name Tags to apply

Design Examplel-Billing-Dental Examplel-Billing-Dental -

Design Example2-Policy-Auto Example2-Policy-Auto - > E

"
e

Design Example3-Policy-Auto Example3-Policy-Auto -

Cancel

Applying tags for projects matching project name templates.

In this window, tags are marked with colors as follows:

Tag -
Description
color

White A tag exists in the list of tags and will be assigned to a project.

A tag does not exist in the list of tags, but the tag type is defined as extensible, so the tag will be

Green . .

created and assigned to the project.

A tag does not exist in the list of tags, and the tag type is not defined as extensible, so the tag
Red will not be created,

neither it will be assigned to the project. The tag for a project will remain None.

132 /150

Tag -
Description
color

A tag is already assigned to the project. The project still appears on the list because it has other
tag types with the None values.
If the tag is already assigned, but a different tag value is derived from the project name according
to the template, the existing value will be replaced

Grey with the derived value. The replacement is identified with the arrow. The derived value can be
created if the tag type is extensible.
In this case, a new value will be marked green. If the derived tag value does not exist and the tag
type is not extensible, no replacement happens,
and the old value appears in grey with no arrow.

This logic is explained in the tooltips for each tag color type.

Managing Email Server Configuration
OpenlL Studio supports sending emails for mailbox verification.
To manage email server configuration, proceed as follows:
1. In the ADMIN tab, click Mail on the left.
2. Ensure that the Enable email address verification check box is selected.

3. Specify the sender’s URL, username, and password for dispatching verification emails through this email

server.
4. Click Apply All and Restart.

When a sender is defined for the specific server, it can be used to send emails for verification of the
non-verified mailboxes manually defined by a user.

133/150

@ OpenL Studio

Email server configuration

s
Common Enable email address
verification:
:t URL: * smtp://smtp.gmail.com
Repository Username: * 1Smith
s Password: * sseee

System
Apply All and Restart

Notification

#

Tags

£

Mail

Defining verification emails sender

If the user email is not verified, a red exclamation mark is displayed next to this user email in the user
list.

Username First Name Last Name Email Display Name Groups Action
admine 4 x
Iwilliams John Williams jwilliams@company.com A\ John Wiliams 4

A user with unverified email

5. If the verification email is not received for some reason, to resend it, in the Users tab, open the user
record and click Resend.

134 /150

Edit User

Account

Username:
Email: A\

Password:

MName

Display name:

Group
& Administrators
[] Deployers
(] viewers

First Mame (Given Name):

Last Name (Farmily Mame):

Jwilliams

jwilliams@company.com
Resend

John
Williams
First Last W

John Williams

[J Analysts Authenticated
[J pevelopers [] Testers

Save Cancel

Resending a verification email

A user can resend the verification email on his or her own by clicking the username in the top right corner,
selecting User Details, and clicking Resend.

135/150

User Profile

Details Settings

Account

Username:

Email: A\

MName

Display Mame:

Change Password

Current password:
MNew password:

Confirm password:

First Name (Given Name):

Last Mame (Family Name)

JWilliams

jwiliams@company.com
Resend

John
Williams
First Last

John Williams

Save

Cancel

A user initiating verification email resending

The verification email resembles the following:

136 /150

Hello

Thank you for adding your email.
Please verify it to proceed with OpenL WebStudio

Verification email example

Appendix A: ZIP Project Structure
ZIP projects described in this section can be imported into OpenlL Studio. The following topics are included:

* Single Project Structure
* Single Project Structure #2

Single Project Structure

A single project must be archived into ZIP file and have the following structure:

my-project.zip:

rules.xml OpenL Tablets project descriptor
rules-deploy.xml OpenL Tablets project deployment configuration
* . x1sx Excel files with rules

OpenlL Tablets project descriptor and project deployment configuration are optional and can be skipped in a
single project structure.

Single Project Structure #2
For a special case when an archive contains a single folder in the root, use the following structure:
my-project.zip:
my - project Folder with OpenL Tablets project inside
rules.xml

rules-deploy.xml
*.x1lsx

This type of archive is supported by OpenlL Studio only.

Appendix B: OpenAPI Project Generation Algorithm

OpenAPI document describes all APl endpoints, their parameters, request bodies, responses, and so on. Based
on this document, OpenlL Tablets generates the corresponding spreadsheets and data type models. The result

137 /150

of generation is two modules, Algorithms and Modules, with Excel files inside. These two models are always
generated even if there are no rules or modules in the project.

The following topics are included:

* Generation Features

* Table Generation Details

® OpenAPI to OpenL Type Transformation
* Generated Annotation Template Class

Generation Features

OpenlL Tablets generates exactly one corresponding data table, or spreadsheet table, or spreadsheet result for
each path described in the Open API file.

The following topics are described in this section:

® Parameters

® Responses

* Request Body Model Decomposition

* Inheritance and Polymorphism Using OneOf, AllOf, and AnyOf

Parameters

The OpenAPI specification provides multiple places where properties for the endpoint can be located. These
properties can be defined as path parameters, that is, a list of parameters applicable to all operations
described under this path, or described for one of the operation parameters. OpenAPI project generation
algorithm merges all these parameters and uses them as input parameters for a corresponding generated
spreadsheet table.

Responses

The OpenAPI specification allows describing multiple operations for one path, such as GET, PATCH, or DELETE.
An example is as follows.

138 /150

"paths": {
"fusers/{id}": {
"summary”: "Represents a user”,
"description”: "This resource represents an individual uwser in the system”,
"get": {

Example of the path with multiple operations

The OpenAPI format supports multiple HTTP codes, such as 200, 400, and 500, and different response media
types, such as application/JSON, application/XML, and text/plain, and they all can be described for one path.

Just as for operations, only one HTTP code and media type can be used for spreadsheet generation. The
algorithm selects API responses based on the HTTP codes definition as follows:

1. If 200 is found, use it.
2. If DEFAULT is found, use it.
3. 1f no 200 or DEFAULT code status is found, the first found http code is used for table generation.

The priority of media types is as follows:

1. Application/JSON
2. Text/Plain
3. If there is no such media type defined, the first found media type is used for generation process.

Important note: While for generation only one response code or media type can be processed, for filtration
and spreadsheet results determination, all codes and media types are considered.

Request Body Model Decomposition

If the request body is used only once per all OpenAPI schema and it has more than one field, it is
decomposed to its fields. If this schema is a child, parent, or a field of another schema, it is not expanded.

An example of the OpenAPI schema with decomposed request body is as follows.

139/150

"paths":
"fratingEndpoint”: {
"post": {
"summary”: "Rating Spreadsheet”,
"requestBody":]
"content™: {
"application/json”: {
"schema": {
"Sref": "#/components/schemas/AnotherDatatype”
¥
I
¥
b
"responses™:
b
¥
I

"components": {
"schemas™: {
"AnotherDatatype”: {
"type": "object",
"properties”: {
"category”: {

"typa": "string”
¥s
"height™: {
"typa": "string”
}

Request body schema to be decomposed

An example of request body decomposition result is as follows.

Spreadshest Double[] ratingEndpoint | String category, String height)
Step Formula
Result = new Double[]] &

Generated spreadsheet with a decomposed schema in parameters

In this example, the AnotherDatatype schema is decomposed to its fields.
Inheritance and Polymorphism Using OneOf, AllOf, and AnyOf
The following keywords are responsible for the inheritance and polymorphism in the OpenAPI schema:

Keyword Description

140/ 150

Keyword Description

AllOf Used for model extending. The principle is the same as for nesting classes in Java.
OneOf, Reserved for future use. If a schema with these features is used, the corresponding schema is
AnyOf replaced by the Object type.

An example of a schema with included nesting is as follows:

"components”: {
"schemas": {
"Animal”: {
"type": "object”,
"properties": {
"nama":]
"type": "string"
¥
¥
I
"Cat": {
"alloft:
{
"Sref": "#/components/schemas/Animal”
I
{
"type": "object”,
"properties™: {
"speed”: {
"type": "string"
¥
}
¥
]
I
"Dog": {
"allofT: |
{
"$ref”: "#/components/schemas/Animal”
I
{
"Lype": "object”,
"properties”: {
"span": 4
"type": "string”
I
¥
¥
]
}
h

Example of nesting in the OpenAPI schema

141 /150

An example of result is as follows.

Datatype Cat extends Animal
String speed
Datatype Animal
String name
Datatype Dog extends Animal
String span

Example of generated datatypes

Table Generation Details

The OpenAPI project generation algorithm produces tables based on the OpenAPI path details. The following
table types are available:

® spreadsheet table
* data table
* datatype table

The following topics are included in this section:

* Decision Making

e Data Table

® Spreadsheet Results

® Spreadsheet Tables and Datatypes
* Step Default Values

Decision Making

An Openl Tablets project can be generated from any OpenAPI file. It is also possible to upload the OpenAPI
schema generated by the OpenL Tablets Rule Services and thus upload the project with the following features:

* project with enabled RuntimeContext

If any path in the OpenAPI document has an input parameter with a link to
DefaultRulesRuntimeContext as #/components/schemas/DefaultRulesRuntimeContext, the generated
project will contain the corresponding setting and RuntimeContext will be enabled.

Properties Revisions Elements Rules Deploy Configuration

Provide runtime context:

The enabled option for providing runtime context

142 /150

The DefaultRulesRuntimeContext input parameter is extracted from input parameters for generated
spreadsheets. If any path contains RuntimeContext as a parameter, the generated project will have
enabled runtime context. If there is any path without runtime context, the generated spreadsheet will
be marked as non-OpenlL Tablets rule, not included in the included methods regexp, and available only
in the generated service AnnotationTemplate class.

An example of a schema with partially provided runtime context is as follows.

"paths": {
"fexamplePathWithRC™: {
"post": {

"requestBody”: {
"content": {
"application/json™: {
"schema": {
"gref": "#/components/schemas/DefaultRulesRuntimeContext”

L
¥
¥
b
"responses”:
}
}
I
"/pathWithoutRC/{a}": {
"post": {
"parameters”: [
{
"name”: "a",
"in": "path",
"required": false,
"schema": {
"type": "integer"
¥
}
1.
"responses”: {
¥
}

b
"components”: {
"schemas": {
"DetaultRulesRuntimeContext”: {

Example of partially provided runtime context

143 /150

Based on this schema, the examplePathWithRC path with the POST operation is included in the
exposed methods, but pathWithoutRC/{a} path is not included.

® project with allowed variations

If the OpenAPI schema contains all schemas named Variation, NoVariation, VariationsPack,
ArgumentReplacementVariation, ComplexVariation, DeepCloningVariation, JXPathVariation, and
VariationResult, it is considered that the OpenAPI file is generated from the project with variations
support enabled.

Properties Revisions Elements Rules Deploy Configuration

Provide runtime context: [:]

Provide variations:

The enabled option for providing variations

All paths which contain variations will be ignored and a generated project will also have enabled
variations.

Data Table

The path is recognized as a data table model if the following conditions are met:

* The path starts with the “/get” prefix.

* The path returns an array of potential OpenL Tablets data types or simple types, such as String or
Integer.

* No input parameters or operations are marked as "GET".

® One input parameter DefaultRulesRuntimeContext and operation are marked as "POST".

Spreadsheet Results

The path is converted to the spreadsheet result if the schema used in response is used only in responses
through all the OpenAPI schema, and there is no reference from potential datatypes to this schema.

In addition, if there is a schema in the OpenAPI document that has a reference to a potential spreadsheet
result type and this schema does not participate in datatypes, the schema is marked as a spreadsheet result.

An example of the schema with the spreadsheet result that is not returned by any path is as follows.

144 /150

"paths":
"fmysprt: {
"post": {
"reguestBody”: {
"content": {
"application/json™: {
"schema": {
"type": "integer”

I
}
}
b
"responses”: {
“200": {
"content™: {
"application/json”: {
"schema™: {
"Sref™: "#/components/schemas/Myspr”
}
I
¥
h
¥
}
¥
s

“"components™: {
"schemas": {
"Mysprt: {
"type": "object”,
"properties”: {
"Stepl™: {
"type": "integer”,
"format™: "int32"
I
"Step2": {
"Lype": "integer”,
"format”: "int32"
I
¥
I
"LostSpreadshest™:
"type”: "object”,
"properties”: {
"callofspr™: {
"Sref": "#/components/schemas/MySpr”

¥

¥
133;

An example of a schema with two spreadsheet results

The result of generation is as follows.

145 /150

Spreadsheet SpreadsheetResult mySpr ([Integer integer |
Step Formula
Stepl =0
Step2 =0

Spreadsheet SpreadsheetResult LostSpreadsheet |)
Step Formula
callofSpr = mySprinull)

Lost spreadsheet generation result

The LostSpreadsheet is generated because it has a reference to the mySpr spreadsheet result, which is
converted as a spreadsheet result call. Nevertheless, this LostSpreadsheet is not included in the Included
Methods section not to break full validation of the project.

Algont =

[+ .+ myspr.+Y)

Module settings
Spreadsheet Tables and Datatypes

If a path response returns a primitive schema type or a schema participating in data tables or requests, the
corresponding path is marked and generated as a spreadsheet, and the returning schema is generated as an
Openl Tablets data type.

Step Default Values

Spreadsheet tables and spreadsheet result table steps are presented by fields of the schema returned in the
Response section of the OpenAPI path.

e If astepis a primitive type, the default value for a corresponding type is set as a value of the step.

Default values are retrieved from the OpenAPI schema. If a default value is not present, the following

values are set:

Type Default value in a cell
Integer =0

Long =0L

Double =0.0

Float = 0.0f

Boolean = false

String ="" (empty string)

Date

new Date()

146 / 150

Type Default value in a cell

Object = new Object()

* |If a step is an Openl Tablets datatype, a new instance creation is called.

* [f a step is an OpenL spreadsheet call, it is called with default input parameters.

OpenAPI to OpenlL Type Transformation

The following table describes correlation between types described in the OpenAPI schema and types that will
be generated by OpenlL Tablets.

OpenAPI type (format) Openl generated type

Integer (int32) Integer
Integer (int64) Long
Integer(no format) Integer
String String

String (date/date-time) Date

Number(float) Float

Number (double) Double
Number(no format) Double
Boolean Boolean

Note: Parameters of the GET operation for the path are converted to primitive types, such as int, float, double,
long, and Boolean. An example of such schema is described in the GET operation.

Generated Annotation Template Class

Names for generated datatypes, spreadsheet tables, and data tables are retrieved from the OpenAPI schema.
There is no limitation for names in the OpenAPI specification. Names for spreadsheets and data types are
generated from the path of the OpenAPI schema which can include path variables, such as path/{a}/{b}/{c} or
/api/v1/example. Not all characters in the path are allowed in spreadsheet names because names of the
OpenlL Tablets rules, data tables, and data types must follow Java naming conventions.

The OpenL OpenAPI generation functionality can transform invalid table names into correct ones but in this
case, the original paths are lost, and reconciliation is done with errors. To avoid this situation, in addition to
the generated modules, OpenlL Tablets generates an additional template class written using a Groovy script,
which makes it easy to update.

Original paths are stored in the generated service interface and OpenL Rule Services will provide the endpoint
with the same URL as in the original OpenAPI structure.

The annotation template class will be applied by OpenL Tablets Rule Services due to automatically generated
property in the rules-deploy.xml available at Repository > Project > Rules Deploy Configuration.

147/ 150

Open Revision Close Copy Delete Deploy Compare Add Folder Upload File Export

Properties Revizions Elements Rules Deploy Configuration

Provide runtime context: O]
Provide variations: O]
Create services: [] soaP service RESTful =ervice] rmr [] kafka service

Service name:

Service class:

RMI Service class:

“ersion:

URL:

Intercepting template class:

Annotation template class: org.openl.generated.services. Service
Service groups:

Configuration (XML);

Save Configuration Delete Configuration

Example of project properties with annotation template class

- =+ PathsTest
= 'f:,] clazzes
= 'f:_] org
= 'f:,] openl
= 'f:_] generated
= 'f:,] BEMVICES

|=| Service.groovy

Example of the generated Groovy file location

By default, the script is saved to and the
script name reflects the same location.

An example of the OpenAPI JSON file with the annotation template class generated script is as follows.

148 /150

"paths": {
"Japifsave”: {

"post": {
"summary™: “"Example of save endpoint”,
"description”: "Save endpoint”,

"reguestBody”: {
"content": {
"text/csv": {
"schema": {
"type": "integer”,
"format": "int32"

I
¥
F
}s
"responses”: {
"2eat: {
“"content": {
"application/json": {
"schema”: {
"type": "booclean”
I
F
b
"description”: "Success”
F
¥
¥

h
b

Path which requires script generation

In this example, the file contains the path name “/api/save” and the path itself contains illegal characters for a
spreadsheet table name.

An example of the generated spreadsheet table is as follows.

Spreadsheet Boolean apisave | Integer integer }
Step Formula
Result = fakse &

Example of the formatted path name
The api/save path is transformed to the apisave spreadsheet table name.

An example of the generated script is as follows.

149 /150

package org.openl.generated.services

import javax.ws.rs.POST
import javax.ws.rs.lonsumes
import javax.ws.rs.Produces
import javax.ws.rs.Path
import java.lang.Boolean

interface Service {
@EPOST
@Path{wvalue = 'Jfapi/save')
@Consumes(value = ["text/csv'])
@Produces({value = ["application/json’])
Boolean apisave(Integer argd)

Example of the generated Groovy script

Original path is present in the generated service interface, and this service is presented by OpenL Tablets Rule
Services. Endpoint will be available via the same path as for the original OpenAPI structure.

Appendix C: Access to OpenlL Studio for Experienced Users

OpenlL Studio configuration example is available at
http://localhost:8080/webstudio/web/config/application.properties.

Internal APl documentation for OpenlL Studio is available at http://localhost:8080/webstudio/rest/api-docs.

Release 5.27
OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0
United States License.

150/ 150

http://localhost:8080/webstudio/web/config/application.properties
http://localhost:8080/webstudio/rest/api-docs

